THE SEPTEMBER 1936

RADEX

The All-wave DX Log of the World

Modernizing Your Aerial
Distortion in the Speaker
The Short Wave Stations
and When to Tune for Them
Complete Broadcast Station Data

your log is kind of weak in spots.

IF you are blaming your receiver because you haven't heard as many stations as some other fellows. . . .

Why don't you try headphones?

The "Perfect" Phone Adapter

and a pair of good headphones are just what you need to listen in comfort to some of the weak stations that would otherwise get away.

With this device you can silence the loudspeaker and let the rest of the family sleep in peace while you are pulling in stations you never before hoped to get.

The Perfect Phone Adapter, sent post paid, is \$3.95.

Adapter with 2000-ohm headphones, \$6.70

Adapter with "Featherweight", 24,000-ohm headphones (the very finest 'phones made), \$12.00

When ordering the Phone Adapter be sure to give a list of the tubes used. If you live in Ohio add 3% for Sales Tax.

The Radex Press, Conneaut, Ohio

The Whole Colorful Kaleidoscope of Life-Yours - with a SCOTT!

IN the privacy of your own home or in the friendly atmosphere of your ham shack, you surround yourself with the things you prize. You never regret that they are the best there are. The thousands of people who have chosen the SCOTT for ownership have had this in mind.

Unexcelled Tone

World famous for its clear, life-true realism. The diamond brilliant beauty of its

30 to 16,000 cycle high fidelity tone, has won it an envied place in the homes of celebrated musicians. broadcasters and amateurs in more than 146 countries. The SCOTT captures the full range of overtones which enable the human ear to distinguish trumpet from trombone, cornet from clarinet, flute from voice. Exclusive SCOTT Volume Range Expander brings Program beauty which actually exceeds the accuracy of the

broadcast, impossible as this appears. True separate Bass and Treble Controls -no sacrificing one end of the musical scale for the other.

Compare Your DX List

Distance? — Here's a broadcast band teaser from C. H. Weyrich, Baltimore,

35 Watts "A' Power. 2 to 16 KC Variable Selectivity. t Microvolt Sensitivity Dual A.V.C. 23 tubes. 19 Consoles

EXCLUSIVE ROTARY **COIL CHANGER**

Secret of SCOTT superiortyonall bands. Ends drawbacks of varying length gang switch lead-ins. contacts automatically cleaned with every rotation of coil system, vital to wave change efficiency.

E. H. SCOTT RADIO LABORATORIES, inc. 4424 Ravenswood Avenue, Chicago

630 Fifth Ave., New York 115 N. Robertson Blvd., Los Angeles

Md.: 4BH, 4BC (600 watts each) 2BL Australia. 1YA New Zealand, KGU and KGMB (250 watts) Hawaii - all with verifications. Not only does the SCOTT get Hawaii, but Hawaii gets all the world with a SCOTT! Says Otis Hill, of Hilo, Hawaii: "Reception with the SCOTT has been most remarkable . . . I get consistently perfect reception from London, Paris, Rome, Berlin, Moscow

and Holland . . . when I buy another receiver it will be a SCOTT.

Test it 30 Days

Let its magnificent precision prove itself - in your own home - then you'll know what custombuilding can really mean.

Side by side comparison test invited. 30-

day trial in your home in U.S.A. Send tonight for this sensational story!

E. H. Scott Radio	Labor	atories	, Inc.
4424 Ravenswood	Ave.,	Dept.	15P6
Chicago, III.			

Send "PROOF" booklet of the SCOTT Superior Tone and Distance Performance.

Name	·
Address	
City	State

SEPTEMBER 1, 1936

RADIO INDEX

Reg. U. S. Patent Office

ASSOCIATE EDITORS

B. FRANCIS DASHIELL, Technical PAGE TAYLOR, Short Waves CARLETON LORD, Broadcast

THIRTEENTH YEAR

Number 101

CONTENTS

	PAGE
Concerning Your Aerial, by Carleton Lord	. 3
What About My Speaker? by B. Francis Dashiell	9
The Cream of the Short Waves, by Page Taylor	12
Another New Season on the B. C. Band, by Carleton Lord	20
Radio Troubles and Their Remedies, by the Technical Editor	27
Testing the Masterpiece IV, by R. B. Oxrieder	32
Meeting the Artists, with "Betty"	34
A Station for the Nation	36
Why I Verify, by John DcMyer	39
What's on the Air Tonight? The Hour-by-Hour Programs	41
Classified Index to Favorite Artists	46
The Summer Changes in Station Data	47
Around the Clock on the Short Waves	95
Quick Index of All Station Data	96

\$1.75 Per Year

25c Per Copy

See Subscription Blank on Page 96 Published Monthly Excepting July and August

THE RADEX PRESS INC.

Publication Office: - 326 Penton Bldg., Cleveland, Ohio Editorial and Advertising Office: - Conneaut, Ohio

Entered as second-class matter April 23, 1931, at the postoffice at Cleveland, Ohio, under the Act of March 3, 1879.

Printed in U.S. A.

Concerning Aerials

• • • By CARLETON LORD

HE aerial of today is unquestionably the most neglected piece of apparatus in the radio receiving system. Listeners, who shoot the works in buying the most expensive receiver within their means, expect to obtain maximum results from a dollar's worth of wire running to the nearest tree or telephone pole.

In the early days of broadcasting, the limited range of crystal sets forced the erection of an efficient aerial. It was by no means rare to see a forty or fifty foot mast in a backyard, with a four-wire flat-top strung to another pole on top of a house.

Today, the high sensitivity of modern receivers has made it possible to obtain adequate signal strength from a great many stations even with a poor aerial. As a result, many lis-

teners are content to put up with such an installation, regardless of or oblivious to the many advantages which they are sacrificing.

While it is impossible to analyze the many different receiving locations throughout the country, consideration of basic theories will bring forth recommendations on aerial design which will have an important bearing, not only on signal strength. but on selectivity and extraneous noise.

Speaking Technically

Signals from a broadcasting station are radiated in the form of an electromagnetic wave. When intercepted by a wire perpendicular to its field, this wave induces a difference of potential in that wire. In this way, an aerial collects the radio waves and conveys them to the receiver.

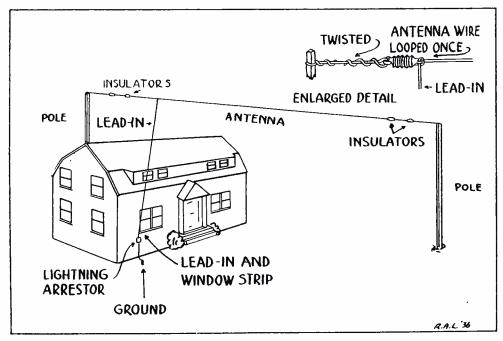


Figure 1. The ever-popular Marconi inverted-L aerial.

However, since the magnetic field of the wave is horizontal, the vertical portion of the aerial—the lead-in—serves as the principal collector.

The field strength of a transmitter at a given point is measured as so many millivolts per meter of height. This figure, when multiplied by the maximum height of the aerial, gives the induced voltage distributed along the entire aerial. Thus, a field of 2 millivolts per meter will induce a distributed voltage of 30 millivolts in an aerial 15 meters high, while but 10 millivolts will be available at the base if the height is only 5 meters.

As a measure of efficiency of an installation, the "effective height" of the aerial is used. This quantity measures the number of millivolts available at the base of the aerial for a signal with a field strength of one millivolt per meter. Thus, for a given signal, the best aerial in any location will deliver the greatest number of millivolts at its base.

Probably the most popular type of aerial is the familiar Marconi inverted-L, and for general broadcast reception it has no superior. The formula for the effective height of the average aerial of this design is expressed as:

$$H = \frac{h(2L - h)}{2L}$$

where H is the effective height; h is the length of the vertical lead, and

L is the total length of wire.

For example, the use of this formula shows that a vertical aerial 50 feet high will have an effective height of 25 feet. By adding a 100-foot flattop, the effective height is increased to 41.7 feet; while a value of 75 feet of effective height would be obtained if the 150 feet of wire had been erected vertically.

From this, it will be seen that the length of the flat-top plays a part entirely secondary to the height of the vertical downlead. Thus, the primary rule of aerial design is to se-

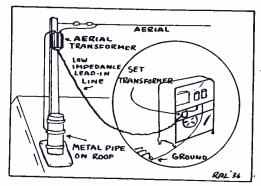


Figure 2. Showing how to convert the inverted-L into a noise-reducing aerial through the use of a low-impedance transmission line.

cure the greatest possible altitude—and then use the remainder of the wire for the flat-top.

Fit Your Location

A survey of his own location should enable every listener to decide on an installation which will give maximum results under existing conditions. Since height is an all-important factor, the erection of rigid masts or poles (preferably of wood) should be considered; one on top of the house and the other at the back of the yard is an ideal arrangement. Trees are not recommended for aerial supports, as they will absorb radio energy and their swaying will cause fading.

In a crowded location, such as an apartment house district, where one finds no obvious support for the contemplated aerial and where other installations provide difficulties of erection, the listener must use his own ingenuity for design. As always, it is important to go as high above obstructions as possible, and then string the flat-top as far as desired.

An excellent method of planning an aerial is to make a scale drawing of the proposed installation, showing the possible height which may be obtained at various points, and then decide on the layout which offers the most advantages. The horizontal span of an inverted-L aerial may be in the form of a single wire, a mul-

ti-wire flat-spread, or a cage. While the use of more than one wire on the span theoretically should increase the pickup of the aerial, experience has shown that the gain in efficiency is negligible.

The aerial should be made of No. 12 or 14 solid or stranded copper wire, as it has good conductivity, can be soldered, and is mechanically strong. If a flat spread or a cage is to be used, care should be taken that all joints are well soldered and then taped. A single wire span should be continuous from the far insulator, across the flat-top, through the near insulator and down to the point of entrance into the house.

Beware Interference

Because of noises radiated from the electrical wiring, it is well to have the lead-in approach the house at an angle, so that only at the point of entrance will it be closer than a At this point, the foot to the wall. wire may be looped around one terminal of a lightning arrester, and then continued into the house through a porcelain tube insulator or attached The receiver to a lead-in strip. should be located as close as possible to the point at which the lead-in enters the house.

During recent years, the importance of lightning arresters seems to have been overlooked by many listeners. However, they are an essential part of any radio installation and should be not disregarded. Besides affording definite protection to the receiver as well as to the house, they are always specified by insurance underwriters. Should a house be struck by lightning, the owner would be unable to recover for damages if the inspectors of the insurance company found the aerial unprotected by an approved arrester.

At all points of an aerial installation, good insulation is vital. At both ends of the flat-top, it is well to include two insulators. For connection between the end insulators

and the supports, heavy sash cord is to be preferred over wire. If it is impossible for the lead-in to approach the point of entrance at an angle, stand-off insulators should be used to keep it clear of rain spouts, telephone or power wires, or any other such objects.

Amount of Wire

As yet, no mention has been made of the amount of wire to be used in the construction of an inverted-L aerial. For broadcast band reception with a modern receiver, the possible height of the supports and the room available for the flat-top are the only determining factors.

For general all-wave reception, a flat-top of exactly 78 feet in length is suggested. Such an antenna resonates at 50 meters and has harmonic peaks on 25 and 16.3 meters. Where space is limited, a flat-top of 41 feet is recommended, as this will resonate 11.5 megacycles, an important short wave band. As many all-wave receivers are least sensitive on the shorter wave-bands, the compensating action of such an antenna tends to improve reception on the higher Where space is availfrequencies. able, a 114-foot flat-top provides a very fine over-all response on a great number of short wave bands.

An inverted-L aerial installed with these points in mind will give excellent reception in a section reasonably free of man-made interference.

Unfortunately for urban listeners, the noise level is usually quite high. For local and semi-distant reception, the noise may not be bothersome; but as soon as the sensitivity of the receiver has been increased sufficiently to bring in real DX, the noise is found to have increased proportionately.

As long as manufacturers continue to produce electrical devices which radiate interference, the listener must attempt the suppression of the noise with his aerial installation.

It has been established that most

of these noise radiations are to be found close to the ground and do not travel very far. Thus, if the flat-top of the aerial is raised to a point where it is above the noise and if the lead-in can be made immune to the field of noise through which it must pass, the pick-up of interference by the antenna system would be reduced considerably.

The only other way for the noise to reach the receiver is through the power line itself and a suitable line filter, placed between the set plug and the power outlet, will correct this condition.

Minimizing Noise

For general broadcast reception in a noisy section, a modification of the inverted-L aerial is suggested. It is an established fact that a high-impedence line, such as the lead-in, is very sensitive to noise radiations; conversely, a low-impedence line is little affected by these waves of interference. Thus, if the aerial has been placed above the general noise level and a low-impedence line is used for the lead-in, a minimum of interference will reach the set.

To realize such a condition, the flat-top wire is terminated at the top of the mast and connected to the primary of a step-down transformer, the windings of which match the impedence of the aerial. The secondary of the transformer is connected to the twisted leads of the low-impedence transmission line. At the receiver, another transformer is used to restore the high impedence of the aerial. And that is one way to reduce noise.

It will be noticed, however, that the low-impedence transmission line is insensitive to noise. It follows that it will not pick up very much signal; and what signal and noise it does pick up will be cancelled out at the transposed junctions of the twisted lead. Therefore, remembering the early remarks about the effective height of the aerial and the import-

ance of a high, vertical lead-in, it must be realized that an installation of this type, depending as it must upon the flat-top for signal pick-up, cannot be as efficient as the ordinary inverted-L aerial.

Consequently, the listener is obliged to determine, possibly by actual experiment, which type is best suited for his location. The presence of a certain degree of noise on a very weak signal may be very annoying, but what advantage is to be had if the low-impedence line removes the signal as well as the noise?

For All-Wave Sets

For all-wave reception, possibly the best antenna is the type known as the "double-doublet." This development was intended to overcome the limitations of the ordinary doublet and to approach an ideal system for short waves as well as the broadcast band.

As the name implies, this system actually includes two doublets, one of which tends to match the antenna towards the lower-frequency end of the short-wave band (49 meters) and the other tends to tune the system towards the high-frequency end of the band (16 meters). This antenna comes ready to erect, with all wires cut to exact lengths for maximum efficiency. A special transmission cable is provided in 110-foot lengths and one or more of these must always be used. A receiver coupling unit serves

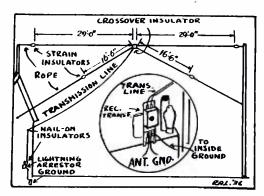


Figure 3. The "Double-Doublet" is recommended for all-wave reception.

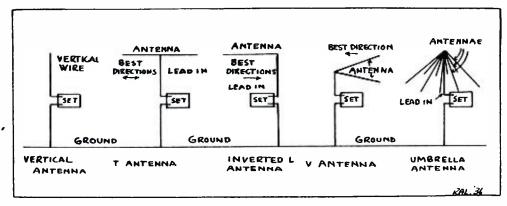


Figure 4. Basic types of antenna design.

five purposes: (1) couples the lowimpedence transmission line to the receiver; (2) balances out the capacity of the transmission line to the ground; (3) cancels local interference picked up by the transmission line; (4) permits a ground connection to reduce receiver hum and instability; and (5) provides a switch for choosing between maximum efficiency on short waves or broadcast band.

As in the case of all other type of noise-reducing equipment, the double-doublet is effective only when it has been erected as high as possible.

Here again, however, the inability of the downlead to pick up signals should impair pick-up on the broadcast band. And once more a listener may be obliged to try out a number of installations before arriving at one which is most efficient at his location. It may even be necessary to have two or more antenna installations to meet all of his requirements.

Other Forms

There are many other types of aerials which offer real and imagined advantages. While the inverted-L receives signals approaching on a line from the direction of the lead-in, the vertical and umbrella types receive equally well from all directions. The V antenna is essentially direc-

tional as is the T type. In the erection of all of these styles, the basic theories set forth earlier in this article must be heeded for best results.

One type which cannot be recommended under any circumstances is the indoor aerial, whether it be in the form of a wire running around a picture molding, a tape under a rug or so-called "aerial eliminator." While the losses of an efficient outdoor aerial may be in the order of 20 or 30 ohms, those of the indoor type may be as high as several hun-At best, indoor aerials are merely good noise collectors and, regardless of the claims of manufacturers or even listeners, a good outdoor antenna is essential to the proper operation of a radio set. Of almost equal importance with the aerial in a radio receiving installation is the The ground lead from the ground. receiver completes the fundamental radio circuit and a good connection is an absolute essential to efficient operation.

The Ground

Much has been written about "trick" home-made grounds which are supposed to improve reception, but most authorities agree that the old-fashioned water pipe is the best of them all. Metal rods, old boilers, radiators and other favorite devices can only give a relatively few feet of ac-

tual ground contact. Water pipes, like Fuller Brush men, cover the entire city or town. Water-pipe grounds are recommended by fire underwriters, hydro-electric technicians and radio experts.

Under no circumstances should a gas pipe be used.

One possible improvement to a water pipe ground may be effected by running a wire around the water meter. In some cases, the washers in the joints between the pipe and the meter may affect the connection and the wire assures a good connection. Ordinary ground clamps may be attached to the pipe on each side of the meter and the wire then connected to the clamps.

In rural sections where water pipes are not available, ground may be obtained by a driven rod or pipe, some metal object immersed in a well or stream, or a counterpoise ground. The latter system is particularly effective where it is difficult to obtain a ground of good conductivity (as where the soil is dry and rocky and the ground water is at a considerable This consists of another wire or system of wires supported a foot or two above the ground and insulated from it. The counterpoise should run parallel to the aerial and preferably under it. It merely acts as one plate of a condenser, with the aerial as the other plate. As it has good conductivity, it works better than a high-resistance ground, even though its surface area is much smaller.

As a final word, it must be remembered that no receiver is better than the antenna it uses. No matter how much a listener pays for his receiver, whether it be \$25 or \$250, the results with the receiver will be no better than its antenna will permit. A good antenna is equivalent in performance to an additional stage of tuned radio frequency amplification.

MISCELLANY

The Universal DX Club announces a contest, open only to members of the club. Briefly, the rules of the contest are: (1) The contest opens Sept. 1, 1936, and closes June 15, 1937. (2) A total of 50 stations will be assigned to be verified; five stations will be listed in the first bulletin and five additional stations in each subsequent bulletin. (3) The stations may be verified at any time during the contest. (4) Credit will be awarded at the rate of one point per mile between the DXer and the station. The member having the greatest number of points at the close of the contest will be awarded a Silver Trophy, fittingly inscribed, for permanent possession,

Roy Wildermuth, Jr., 223 Woodland Ave., Columbus, Ohio, announces a new Cuban station. The name of the broadcaster is "COCQ, de la RCA-Victor," and it is situated in Havana. "It comes in on about 9755 kcs.," he says. "The station announcement is preceded by two gongs, the first higher than the second. After the announcement a fire siren is sounded. It is heard in the evenings between 7:30 and 8 pm, EST, and is very loud and clear."

Among the 600 odd stations in the United States, more than a dozen are managed by ladies. Many stations have women as sales executives and program directors. Some of the better-known stations owned or managed by women are WJAY at Cleveland; WNEW, Newark; KOH, Reno; KGBU, Ketchikan; and KMO, Tacoma.

Major Bowes and his Amateurs are scheduled to leave the NBC on Sept. 13, and four days later, on the 17th, this program will be heard over a nationwide CBS Network under the sponsorship of the Chrysler Corporation of Detroit.

WHAT ABOUT My SPEAKER?

• • • By B. FRANCIS DASHIELL

HILE several types of loud speakers are in general use in radio receivers, the one that concerns most set owners is the standard dynamic assembly. It is found in practically all sets that are current. alternating operated bу Trouble does not occur in loud speakers as commonly as the disorders that arise in other parts of the receiver; but speakers do require certain adjustments, replacement of parts, and at least an annual examination as to their fitness.

So, if your receiver has been exhibiting symptoms of speaker trouble, and even if it seems perfect, there is no time like this summer season to overhaul and readjust its parts. Perhaps a little study of the speaker and how its parts function will enable most of us to understand the importance of this sound reproducing unit. Certainly, we can not devote too much care and attention to this almost human part so it will continue to give true fidelity of tone.

Field-Coil Hum

The dynamic speaker has two coil windings. One coil is rather large because it must furnish the electromagnetic field which creates the powerful speaker magnet. This field coil carries the strong direct current that is provided by the filter and powerpack system of the receiver. The direct current is first carefully filtered to remove all traces of hum, as otherwise this electrical hum would be transferred to the iron core of the speaker as a magnetic hum.

If a poor quality of rectification is provided in the power or eliminator section by defective filter condensers or too small choke coils, speaker hum will persist. Then, too, hum may be caused by induction between the speaker cords and an adjacent a-c power line. Sometimes a slight increase in the capacity of the filter condensers, or an addition to the filter chokes, will stop such hum. The field coil and iron core of the speaker must, of course, be carefully secured and made very rigid, or a vibrational hum might result.

Field-Coil Choke

Now when this properly filtered and silent direct current passes through the field coil, it sets up a steady but silent magnetic field in the iron mass of the speaker magnet. This is necessary so that the speaker can work. Smaller speakers, using permanent steel magnets, and called magnetic speakers, are suitable for battery sets; but a very powerful magnet, such as can be produced only by a strong current of electricity, is required for all large a-c receivers.

Very frequently this field coil is arranged in the circuit so that it acts as a choke coil or part of the filter system. If a speaker of this type is removed from the circuit, its field coil must be replaced with a choke coil of the same size and inductance, or otherwise the filter and rectifier system will fail to function. In any case, however, the field coil of a speaker must not be removed from the circuit when the set is operating, for its resistance provides a definite portion of the entire load on the powerpack system and its elimination causes the current to become dangerously excessive in the rest of the circuit. This is why set-owners are cautioned by the manufacturers never to remove a speaker plug when a set is turned on.

The Speaker "Pot"

The speaker magnet is shaped like a small-mouthed iron pot. It also has an inner pole that projects upward in the center which is surrounded with the field coil winding. This inner pole forms one magnetic pole of the magnet, while the outer, or surrounding, rim of the "pot" becomes the opposite pole. Between the central pole piece and its surrounding or encircling pole, there is a space called the air gap. This air gap varies in distance across, but in the most efficient speakers the distance is exceedingly small. Of course, not all speakers are designed in this exact manner, for there are many variations from the standard practice of assembly. The principal remains the same in nearly every speaker.

The field coil, which energizes the speaker magnet so it will exert a powerful pull across the air gap, is not the only coil in the speaker. There is another and smaller winding, called the voice coil. This coil is attached to the speaker cone, and is suspended so that it centers exactly within the air gap. However, the clearance between the central magnetic pole and the inner surface of the voice coil must be the same as the clearance between the outer surface of the voice coil and the inner rim of the surrounding pole of the magnet. This matter of perfect balance is highly important.

The Voice Coil

The dynamic speaker, therefore, utilizes two different coils which are not connected electrically. Each coil must be a continuous electrical circuit, for the tiniest break in the many turns of fine wire renders the speaker silent. Testing either coil with a small battery and sensitive meter or head telephone will quickly indicate which coil may be at fault. Replacement with a new coil of similar dimensions and resistance is the

only remedy, and any attempt at rewinding the wire usually meets with failure.

The voice coil will not operate when the field coil is dead, and the speaker will not reproduce sound if the voice coil is broken. But the field coil will work even if the voice coil is defective. The voice coil may be disconnected from the output transformer circuit without affecting the set or disturbing the field coil. The latter coil is more apt to burn out and become dead than the voice coil, but it is not impossible for the latter also to become inoperative.

How It Works

The voice coil receives its current from the secondary winding on the output transformer. The primary winding of this transformer is operated by the current from the plates of one or two power tubes, singly or in push-pull. It is well known that the induced current in the secondary of the transformer is an alternating current which varies constantly in frequency and intensity. So, this output, which is fed into the voice coil, keeps a continuously changing magnetic field surrounding the windings of the voice coil.

Now, this pulsating magnetic field, placed as it is within the influence of the steady pull or field between the two poles of the magnet, causes the voice coil to be subject to tiny variations of position, as it is attracted or repelled by the field magnet. The voice coil, which is not rigidly supported, vibrates at all speeds or audio frequencies within the range of the human ear. And these vibrations are identical with the vibrations imparted to the diaphragm of the microphone located in the broadcasting studio.

The Cone

Also, within the speaker, is a part which is usually called the cone. It really is a diaphragm—— like the

Two pieces of iron pipe and a whiskey funnel may not mean much to many persons, but Bob Burns, leading citizen of Van Buren. Ark., put them together to make his famous bazooka. He is now recognized as a virtuoso on this instrument, as well as being one of the most popular comedians of the day. Listen to him on the Kraft Music Mall on Thursdays at 9 p.m., EST, on the Red Net.

one in a telephone receiver. The flat cone is constructed of stiff, moisture-proof material, such as parchment. And the voice coil is attached to the apex or center of the cone. The motion of the voice coil is imparted to the cone as a vibration, and in turn is communicated to the air as a sound wave.

The cone vibrates at different speeds at various points on its surface; the highest frequencies occur at its center, and the lowest or the deep bass notes being reproduced near or at the edge. If for any reason the cone should become warped, pressed upon at some spot, or torn or displaced, the tone immediately will be affected. When a cone is found to be distorted or marred in any way the best thing to do is to replace it with a new one.

Defective Cones

Sometimes a layer of dust on the cone will cause a deadening effect, or a change in tone; dust must be carefully brushed off at intervals. Then, too, the rim of the cone fits loosely against a soft, felt lining on the baffle board, and this arrangement should be looked over as the felt should prevent the flow of projected

air back around the edge of the cone so as to make better low-note reproduction possible.

Chattering or metallic sounds are observed on loud and high notes, and it will be well to examine the centering of the voice coil or armature within the field magnet. It may be necessary to loosen the set screws and carefully re-center the voice coil. A strip of thin paper wrapped tightly around the voice coil so it can be firmly placed within the "pot" opening of the field coil, will permit of its easy centering. The paper then is pulled out after the screws have been tightened.

Speaker Distortion

ţ

Distortion, of course, is not always the fault of a speaker. Frequently there is trouble in the audio system, such as unequal plate current in the two half-sections of the primary of the push-pull transformer and associated tubes. Or there may be tube and biasing resistor and condenser defects. A misshapened cone causes distortion, and any should be repaired. Better still, however, the cone should be replaced the cost is slight. Check carefully to see that the voice coil is properly centered in the field "pot" opening: look over the negative biasing of the secondary coil feeding directly into the voice coil.

A weak speaker usually means that either of its two coils are not receiving a proper supply of energy. Check the field coil for conductivity or a short circuit as well as the voltage being supplied it from the power unit. Check the output transformer, primary and secondary, for conductivity, and see whether it is being supplied with the proper "B" voltage. The cone and its voice coil should be free to move and not "frozen" in any way.

Deep and booming tones in a speaker may be due to resonance (Continued on page 56)

The CREAM of the SHORT WAVES

• • • By PAGE TAYLOR

OST of our readers know that the Federal Communications Commission conducted an informal hearing last June to discuss changes to be made on the short and ultra-short wavelengths. A resume of the most important changes in these services made since June will be of interest.

Stations formerly known as broadcast pickup stations are to be known as "relay broadcast stations." The "apex" stations will be known as "high-frequency broadcasting stations."

Experimental relay stations (shortwave broadcasters) are now "international broadcast stations." senders are required to provide direct international broadcasting services instead of merely a relay as formerly. Regular programs can be rebroadcast on the shortwaves but no remuneration can be received for the s.w. broadcasts and a premium above regular advertising rates cannot be charged if a sponsored program is radiated over a s.w. auxiliary. Separate call letters and licenses will be issued for each frequency; the minimum power for these stations will be 5 kw., and call letters must be announced separately over each station.

In compliance with the new regulation requiring high power, the WCAU Broadcasting Co., 1622 Chestnut St., Philadelphia, Pa., advises us that their shortwave station W3XAU on 6060 and 9590 kcs. has been temporarily closed down so the power can be raised from 750 watts to 10 kilowatts.

The experimental broadcast stations on 1530, 1550 and 1570 kcs. are now known as special broadcast stations. The entire band from 1500 to 1600 kcs. has been opened up for

broadcasting but it is not contemplated at present that any further licenses in this band will be issued.

The frequency bands from 2000-2100 and 2750 to 2850 kcs. have been dropped from the television service. Experience has shown that satisfactory pictures cannot be transmitted successfully within these narrow bands. Television stations will all be on the ultra high-frequencies, between 42000 and 110,000 kcs.

The 24-Hour Clock

An explanation of our method of indicating time is here included for the information of new readers. We show time by the 24-hour clock, and unless otherwise stated, time is Eastern Standard. Midnight is indicated by 0000 or 2400, and the morning hours are written as usual, except the colon is omitted, 0940 and 1130 being 9:40 and 11:30 a.m. respectively. Noon is 1200. Afternoon hours do not commence to count again at 1 p. m., but continue up to 2400 for midnight. Thus 1 p.m. is 1300, 2 p.m. is 1400, etc. Any number greater than 1200 is p.m. and any number less than 1200 is a.m.

There are a few standard radio abbreviations that should be familiar to all readers. Perhaps the most common is "meg." which stands for megacycles. A megacycle is 1000 kilocycles. The abbreviation for kilocycles is kcs. A kilowatt, 1000 watts, is shown by kw.

When writing to radio stations for verifications, listeners are always requested to send International Reply Coupons (with very few exceptions). IRC can be purchased at any Post Office for 9c each, and can be exchanged in any country which is a member of the Universal Postal Union for Postage Stamps equal to the first-class letter rate to this country.

For some unknown reason Reply Coupons are not acceptable in Mangua, Nicaragua, as the operators of stations YN10P, YNLF and perhaps other stations there will not verify reception unless reporters send three cents in unused United States stamps.

Try for CFCX

A special program will be broadcast on September 20 from 0200-0300 EST from CFCX, 6005 kcs., Montreal, P. Q. This station was formerly called VE9DR. The special broadcast will be dedicated to the Newark News Radio Club, according to information from Morton Meehan, Elizabeth, N. J., but all shortwave tuners are requested to listen in and report.

Shortwave broadcasts from the Soviet Union are now radiated on three frequencies, according to a new schedule received from Radio Center, Moscow. On 19.89 meters or 15.090 megs. is RKI, 20 kilowatts. RNE is used on 25 meters or 12 megs, and a new, powerful station, RAS, works on 9510 kcs.

English broadcasts are heard on the following schedule: Daily, 1900 EST, RAS; Monday, Wednesday, Friday and Sunday, 1800 EST, RNE. Wednesday and Sunday at 0800, EST on RNE. Sundays only at 1200 and 1530, EST, over RKI.

The Daventry Schedules

The schedule of the British stations at Daventry in effect at presstime follows:

Trans. I. From 0015 to 0215, EST, on GSB, 9510 kes. and GSD, 11750 kes.

Trans. II. From 0700 to 0845, GSG, 17790 and GSH, 21470. Trans. III. 0900 to 1200 on GSF, 15140, GSG and GSH.

Trans. IV. From 1215 to 1745 over three of the following stations: GSB, 9510, GSD, 11750, GSF, GSH or GSO, 15180 kcs.

Trans. V. From 1800 to 2000 on GSC, 9580, GSF, 15140 and GSP, 15310.

The radio ears of the world were in tune with the German Broadcasting Company during the Olympic Games. Here is the Broadcasting House in Berlin, center of the German Broadcasting activity. The little building to the extreme right, indicated by the arrow, houses the German shortwave center.

Trans. VI. From 2100 to 2300 over GSC and GSF.

Slight changes sometimes occur in the times or frequencies used and interested listeners should always listen for the program announcements on Saturday nights for the following week.

In order that listeners throughout the whole world may be assured good reception of the broadcasts from the Olympic Games at Berlin, the German shortwave station considerably increased its power. Reception of the German stations has always been most remarkable, especially in view of the fact the comparatively low power of 7 or 8 kilowatts was used. Beginning the first of August, however, the transmissions from Zeesen were made with a power of 40 kilowatts.

The Zeesen Schedules

The German schedule in effect at the present time is given here:

DJA, 9560 kcs., 0005-0515; 1650-2245, EST.

DJB, 15200 kcs., 0005-0515; 0555-1100; 1650-2245.

DJD, 11770 kcs., 1135-1630; 1650-2245.

DJE, 17760 kcs., 0005-0515 daily; 0555-1100, irregularly during the Olympic Games.

DJL, 15110 kcs., 1135-1630.

DJN, 9540 kcs., 0005-0515; 1650-2245.

DJQ, 15280 kcs., 0555-1100; 1650-2245.

DJR, 15340 kcs., 0555-1100.

The Norwegian shortwave station at Jeloy was built originally merely to extend the broadcasting facilities within the country, but it has been decided to broadcast experimental programs in an attempt to reach countries outside of Europe. ular broadcasts started this month, September, according to information from the U.S. Consul General at Oslo, programs being radiated from 1800 to 2300, EST, on 9530 megs. Announcements are made in Norwegian and English. This station was formerly known as LKJ1 but we are not sure if these call letters are used now. The address is Director General, Administration des Telegraphes du Royoume de Novege, Os-This is one of the few shortwave stations in the world which permits paid advertising, income from which is used to finance the broadcasts.

10-meter Reception

Reception of the ultra high frequency stations is becoming more Beverly Wilder, Jr., Incommon. structor in Geology at Antioch College, Yellow Springs, Ohio, has heard and verified a station Q8C7 at San Pedro, Calif. on 31 megs. His verification is most interesting, reading, "Since temporary installation of this equipment we have been conducting extensive tests. The purpose of this station is to work two-way communication with our Los Angeles office, but we have been of the opinion that our signals were coming down east of the river (Mississippi) and your letter confirms this opinion, The equipment is manufactured by the General Electric Co. for the United States Coast Guard. The maximum power output is 15 watts. We are working on exactly 31 megacycles. The antenna consists of a copper wire 14 inch thick and fifteen feet one and

a half inches long. This station is located on the waterfront at San Pedro, Calif."

J. Herbert Hyde, Box 82, Elmwood, Conn., has a number of recent verifications with information which may be useful to other listeners. HC2JSB, "Ecuador Radio," works, according to their card, on 1070 kcs. and 7854 kcs, with 500 watts power on the s.w. This station, operated by Juan S. Behr, claims to be the oldest station in Ecuador. HCK, "Radiodifusora del Estado," Quito, Ecuador, transmits on 5885 kcs. with 250 watts, according to the card.

Anthony C. Tarr, 909 W. Lee St., Seattle, Wash., has been corresponding with the operator of station KAED at Angoon, Alaska, and from him obtained an up-to-date list of the Alaskan telephone stations. might be interested in the fact that Angoon has a population of 23 people, 11 whites and 12 Indians." informs Mr. Tarr. "I learned from the radio operator that the town has three churches, Methodist, Catholic and Greek Orthodox, and the entire town goes to all three. The town band, he says, plays on the slightest provocation, and inasmuch as each instrument is slightly off key, the results are most amusing." We wish KAED could broadcast a concert by this band sometime.

South American Data

"HI3U, La Voz del Comercio, Santiago de los Caballeros, D. R., is now working on 6014 kcs," according to R. B. Oxrieder, 122 E. Hamilton Ave., State College, Pa. "HI3U was on 6380, and I believe it has a power output of 25 watts. The Dominicans certainly shift around a lot; HI3C at La Romana, formerly on 6900, is now working on 6098 kcs. This station, La Voz de la Marina, also uses 25 watts, and because it is now so close to W9XF-W3XAL it is heard only very poorly."

"The Voz de Barranquilla," HJ1ABB, is reported testing on the

new frequency of about 9560 kcs. in the evenings and mornings.

A letter from the Sres. Nebot y Castro, Maracaibo, Venezuela, informs us that they have bought radio station YV5RMO from Sr. Vegas, and changed the name from "Ecos del Caribe" to "Ecos del Zulia." The frequency remains the same, 5.850 megs.

Asiatic News

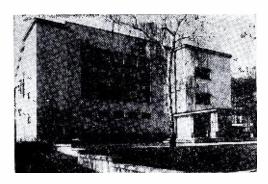
KZRM, the largest of the Philippine broadcasting stations, is being relayed on shortwaves quite regularly over point-to-point station KAZ, 9.99 megs.. Manila, according to some reports, while others mention KTR en 10910 kcs. as the station which As the purhas the rebroadcast. pose of these tests is to determine a good frequency for regular shortwave broadcasting from the Philippines, it is likely that both of these stations are used. These s.w. stations are operated by the Radio Corp. of the Philippines, Plaza Moraga, Manila.

Mr. A. I. Breen, Secretary of the N. Z. DX Association, sends lots of information on stations in his part of the world.

The Radio Club Oceanien, Papeete, Tahiti, in a letter to the N. Z. DX Radio Assn., states that they are the operators of shortwave station FOSAA, "Radio Oceanie." This station transmits on 7.1 megs. with a power of 25 watts, but this will be increased very soon. The schedule is Tuesdays and Fridays from 11 p. m. until midnight, EST. They will verify.

The new Western Australia station **VK6ME** will work on 9590 kcs. with 300-400 watts in the aerial. The transmitter is well under construction and should be working this winter.

The Chinese station which was heard a few times in the 31-meter band is officially operating on 9460 kcs., according to information re-


ceived by Secy. Breen. This station was formerly XGON on 930, but its call letters are now XGOX. From 0630 to 0930, EST, is the time to try for them.

The Radio Engineer attached to the Post and Telegraph Dept., Bangkok, Siam, writing to "Tune In," gives the call letters of the new station at Sala Daeng as HS8PJ, and the wavelength as 27.38 meters (10950 kcs.). This 10 kw. station is on the air every Monday from 0800 to 1000, EST and is heard well in some parts of the USA.

Mr. Breen reports that a station VJI is received at R7 signal strength in Dunedin (N. Z.). VJI, Cloncurry, Qsld., Australia, is testing and asking for reports on 8630 kcs. near 0400, EST, Fridays. Address the Aerial Medical Service at Cloncurry if you are lucky enough to receive this low-powered station.

New Europeans

Some bits of gossip picked here and there; none of this data is confirmed. "Radio Stockholm," Sweden, reported on Saturday mornings on 7.1 megs. A station in Spanish Morocco is reported on 6.1 megs. TFJ, 12.235 megs., Reykjavik, Iceland, has resumed broadcasting on Sundays, 1440-1530, EST. A new shortwave station is reported under construction in Kaunas, Lithuania.

The new modernistic-style building housing the broadcasting facilities of the Frankfurtam-Main station in Germany. This 25 kilowatt station works on 1195 kcs. and is frequently heard by DXers.

Because of its extensive colonial possessions, the Netherlands is interested in developing s.w. broadcasting along the same lines as the Empire Service from Great Britain. The PHOHI now has four frequencies at its disposal, PHI on 11725 and 17775, and PCJ on 9590 and 15220. Broadcasting from these stations has usually been of a more or less experimental nature.

In March of this year Radio Beograd H was put in operation. Belgrade station, owned by the Post and Telegraph Department of the Yugoslav Government, works on 6100 kcs. with a power at present from 250 to 400 watts. The hours of operation are from 2 to 8:30 am, and from 11:30 to 4:30 pm., EST. Due to the fact announcements are made in seven languages, French, Italian, German, Hungarian, Greek, Albanian and Serbian, this station has already proved popular in the Balkan Countries, which heretofore have had no radio station serving them in their own language. The range of this station will be considerably increased this fall when the power is raised to 2.5 kw.

"The 20-meter Thrill Band is recommended to those who want to hear more foreign countries and to those who just try to log the greatest number of stations possible," points out Ray English, 360 Lafayette Ave., Passaic, N. J. "One big point in favor of this band is that one generally does not have to listen from 30 to 60 minutes for a station announcement: the amateurs give their calls frequently. Foreign amateurs are located at either the high or the low side of the American phone band, and to bring them in one should have a good set, good headphones and a good doublet aerial." Mr. English submitted a list of the 70 amateur stations he has logged outside of North America, but these cannot be included here. The Radio Amateur Call

Sedley Brown and Allie Lowe Miles, representing a clearing house for domestic relations problems, conduct the program "Husbands and Wives" heard on the Blue Network on Sundays at 6:30 p.m., EST. In this novel program, representative questions sent in by listeners are selected, and then men and women who have successfully solved similar problems are brought to the microphone.

Book Magazine lists all the amateur stations in the world and is recommended to anyone interested in the "hams." We cannot list even the better known stations because their very irregular operating habits make it almost impossible for anyone to tune for a particular station and get it.

One of the most active DXers, on both the s.w. and the BCB, has announced that his DXing activities are over. Eric Butcher, formerly Cokeville, Wyo., writing from New Orleans, says he is quitting the game because of poor co-operation on the part of stations. This seems strange in view of the fact he has 60 foreign countries verified; we think the sea has called Erie again and we hope he will send us some first-hand information when he gets down to Australia.

Some assorted information comes from Merton T. Meade, 819 Wyandotte, Kansas City, Mo. In condensed form, the information follows: HJ4ABE has moved to 6095; HJ1ABB has moved to 6128 kcs. YNLF, Managua, Nicaragua, is testing on 9670 kcs.; HI8Q, Trujillo, D.

R., was heard on 6240 kcs. Mr. Meade wishes to exchange SWL cards.

Canadian Police

"I have a 1936 Philco and have logged over three hundred stations already," writes Ed Sharpe, 86 Hunter St., W. Hamilton, Ont. "I have on their heard Hilversum, PCJ, Wednesday night broadcasts on 9590 kcs. with very good volume and clarity. It is one of the best Europeans at this time. The correct call letters of the Toronto police station are CYQ, and the Hamilton police have a new Marconi station operating on 1710 kcs. with the call letters CZ6F. CYQ is on 2318 kcs."

"I recently built a two-tube converter which tunes approximately from 16 to 49 meters," reports Warren Winkley, Hughson, Calif. this little set I have picked up a number of s.w. stations, among them XEXA, 6.182 megs, daily from 1800-2130, PST. KKH, Hawaii, Mondays on 7520 kcs. from 2000 to 2145, PST. DJN, Zeesen, Germany, 9540 kcs. daily from 1700 to 1930. HJ1ABP, Barranquilla, Colombia, 9600 kcs. from 1600-2000 daily. LRX, Buenos Aires, announced its frequency as 9660 kcs. The Japanese programs are heard at present on JVH, 14600 kcs. from 2030-2200 with very good In fact, all the stations so far mentioned have been heard at least R6."

"I have been more than satisfied with the performance of my Stewart-Warner radio which I bought in 1933," submits Mrs. Alice Wilbur, 203 Mulberry St., Newark, N. J. "I have heard all continents except Asia, and considering my locality which is surrouned by electrical and railroad lines I think I have done quite well. Among the better catches in my log are HAT4, PCJ, HVJ, seven English stations, seven Germans, two Russians, eleven in the city of Trujillo, D. R., and many others."

Correspondents Wanted

Wallace Howe, 3 Headley Terrace, Irvington, N. J. Uses a 7-tube Grunow and although he would like to hear from anyone, is especially anxious to write to Grunow users. Has heard all continents but likes the hams particularly.

Edward Hughes, 1212 Castlewood Ave., Louisville, Ky. Is 15 years old and wishes to exchange photographs as well as correspondence. Amateur reception is his chief interest and he does his listening on a Stewart-Warner converter.

Roland Doyle, 24 Baden Powell St., Rockhampton, Australia, wants to exchange cards with American fans. He has been DXing about two years, has 540 cards in his collection, and the card he sent us to look at is a beauty, worth having. This one is also a ham listener.

Robert Armstrong, Route 13, Dayton, Ohio, says he will answer all letters he receives. He does not confine his tuning to the amateurs but tries all the bands; confesses he likes the 20-meter hams though.

"Someone may be interested in knowing how long it takes a verification to come from the Fiji Islands," suggests Carl Scherz, Box 856, San Angelo, Texas. "I heard VPD, 13075 kcs., on April 4, wrote to them the same day, and received my QSL card on June 15. This station is weak and hard to get here. It is heard beaween 12:30 in the morning, EST, and 1:30."

Czechoslovakia on the Air

Just as we go to press two listeners write about their reception of the new shortwave station located at Podebrady, Praha, Czechoslovakia. W. H. Chorley, 42 Langside St., Winnipeg, Man., says, "You may be interested to hear that at 1620 CST I picked up Prague. The announcer gave his frequency as 19.698 meters, saying that later on he was moving up to 25.51 meters. I was listening to

Berlin and London at the time, and on returning to Prague heard the announcer say that he was moving to the 6 megacycle band."

The other reporter, John F. Holub, 1419 So. Clarence Ave., Berwyn, Ill., learned a few more details. "I heard Radio Podebrady testing from 11 p. m. until midnight," he pens. "They announced they had been broadcasting from 20 hours British Summer Time Friday to 8 hours Saturday (2 p. m. to 2 a. m. EST?). They changed every hour and every half hour to a new frequency, in the following order: 15230 kcs., 11 to 11:30 p. m.; 11760 kcs. from 11:30 to midnight; 6115 from midnight until 12:30 a.m. etc. On 19 and 25 meters (15 and 11 megs.) signals were very good and the Czechoslovakian music delightful. I couldn't hear them on 49 meters (6115 kcs.). I have mailed a report and hope to be able to confirm the frequencies and other data."

T14NRH

From Sr. Amando Cespedes Marin comes a letter announcing the return of his well-known s.w. station to the ranks of regular broadcasters. "Now NRH is back on the air, on 9670 kcs., between Havana CMQ and Daventry GSC," Sr. Cespedes writes in his distinctive style. "She is crystal controlled now and the schedule is 8 to 9 pm CST and 10:30 to 11 pm CST. The very first one to report my first testing was Mr. Capt. Horace Hall. I did not advise anyone officially about my coming to the air, because I wanted radioways to be our own testification, and thus I have received bunches of mail from USA and West Indies, and they all state NRH is as clear as a big station and all inquire about its power. They all copy all I have to say. How good of them, because they cheer fraternity and no advertisements at all. More over, I talk my own English and feel my own ways. Please advise all friends that NRH is back to stay, for I work no more the TIRCC which actually

is a great failure. I ended my year contract there and decided to renew NRH activities."

Old timers will remember that NRH, Heredia, C. R., was one of the pioneer shortwave stations of the world, and with the very small power of 7.5 watts was heard around the world. His present frequency and operating schedule are very nearly identical with his original set-up. After achieving world renown as the successful operator of the smallest radio station, Sr. Cespedes, hoping to widen his audience still more, increased his power. Subsequently he was called to Nicaragua to install and operate several stations there, and for the past year he has worked and managed TIRCC at San Jose, Costa Rica. Now he is back in his own city, with his old friends and among his bamboo trees and coffee plants, trying to recreate "the world's most friendly station."

Radio Saigon?

"I believe Radio Saigon is finally back on the air on 11.75 megacycles," supposes Roy Myers, 4506 St. Elmo Drive, Los Angeles, Calif. "It has become quite a joke among local DXers, every time they hear an unknown station, to say that perhaps it is Saigon, but I think this time it really is. There is another unknown on 6.85 megs which is heard quite regularly at 0500, PST, with a lady broadcasting news items in English about the Orient.

"On the shortwaves, over 150 verifications have been received, with four of them from Africa. I still have five more reports out to Africa with only one overdue, ZTJ. I think that is pretty good, to have nine Africans on the west coast. Listeners who want to hear real DX should tune in the 14 meg. Amateur band; near 1800, PST, I have heard XU3FK at Chefoo China, VS7RA in Ceylon, VS6AQ in Hong Kong, and three Javanese."

Among the Alaskans

EADERS may wish to have some R up-to-date information concerning many of the Alaskan 'phone stations," surmises Ashley Walcott, 76 San Rafael Way, San Francisco, Calif. "The information I am submitting comes from operators of the respective stations. First, KAED, Angoon. is a 40 watt Territorial station on 2616 and 3092.5 kcs. On 2616 it can work any other station, but the operator has a regular schedule only with KAEP. Tenakee, at midnight, EST, probably daily. KAEP is a new Territorial station on both 2616 and 3092.5 kcs., working Angoon and Juneau. Coming back to KAED, it works on 3092.5 exclusively with WXA, Juneau, at 12:45 am EST.

"K(iM, Ketchikan, answered a September report in January, giving his schedule with his ships as noon, 1600 and 2300, EST. It is not known if these schedules still are kept.

"At Cape Pole, KIJB, 2994 kcs., with ten watts, works with KDK at Wrangell. It is heard occasionally at 0130 EST.

"KIJR, Port San Juan, is a 50 watt Northern Radio Co. station, and works two other salmon canneries. one at Todd, Chichagof Isl., and the other at Uganik Bay, Kadiak Isl., and also the Signal Corps station at Anchorage, WXE. Port San Juan is located about 5 miles across the bay from Latouche in Prince William Sound, on Evans Island.

"KIJW, Shearwater Bay, Kadiak Island, works with KIJX on 2912 kcs. at 1330, 1900 and 0015, EST. According to a map he sent, Shearwater Bay is at the extreme end of Killuda Bay. Mr. R. C. DeLong is the operator.

"KIJX, in the town of Kadiak, repeats the schedules given by KIJW, and adds two with KIJP. Uganik at 1315 and 0000. EST. Both KIJW and KIJX are 50 watt stations,

working on 2913 kcs. most of the time, but with an alternate frequency of 2632 kcs.

"There are three new Territorial stations in the Aleutian Islands: KAEW, Umnak Island; KAJJ, Atka Island, and KAJU, Attu, Isl. All are licensed for 5207.5 kcs. and for 2616, according to WXE. These stations work WXY at Nome; I am not sure of the schedules but I have heard one at 5:30 am, EST.

"WXY, Nome, is heard on 2604 working the Aleutian Islands."

It was reported in the press recently that Andre Kostelanetz and Lily Pons will be married, perhaps the first of next year. Kostelanetz conducts his dance orchestra on the CBS on Wednesdays at 8 p.m., EST. and on Fridays at 9 p.m.

The Red River Broadcasting Co. has a construction permit to move its station KGFK, 1500 kcs., from Moorhead to Duluth, Minn. When the station is set up in its new location the call letters will be changed to KDAL.

Another New Season on the B. C. BAND

• • • By CARLETON LORD

lTH the approach of September, a new DX season looms upon the horizon. After a few months of respite from the regular early-morning sessions at the dials, it is with a decided sense of anticipation that listeners look forward to the coming months and wonder what is in store for them.

A year ago, we ventured to predict a poor season for DX on the broadcast band. This was based on the established fact that the much-publicized sun-spot cycle had passed its 1933 minimum and was on a decided uptrend towards the maximum in 1939.

Listeners will now agree that the 1935-36 season was, to say the least, disappointing. Static was abnormally high most of the time. Signals appeared to be blanketed early in their journeys through space and seldom were satisfactorily received at a distance.

From all indications, the approaching new season will probably be a repetition of last year. We hoped that we were wrong when we made our prediction twelve months ago; we hope that events will prove that we are in error now.

Making Ready

However, while there is little that listeners can do to change nature's strange command of the phenomena of radio, there is a great deal that can be done to make the most of such reception as we have.

Some fortunate DXers will be trying their hands at tuning new 1937 receivers. Those who will be starting another session with their older models would do well to check over their installation carefully. Two causes of weak signals are dirty condenser plates and tube sockets. A soft pipe cleaner drawn between the plates several times will clean up the condensers. Tubes should be pulled and their prongs polished. Jacks and phone plugs should be cleaned and polished. A small piece of emery cloth, rolled about the size of a match, will do wonders in cleaning up socket contacts. Many other attentions will come to mind after the check-up has been commenced.

The tubes themselves should be checked and replacements made of any which test the least bit weak. While most listeners don't think of tubes until their receivers start to act up, a bad one can mean the difference between hearing a good catch at comfortable volume and absolute silence. Just as a bad spark plug is supposed to waste one gallon of gasoline in ten, a weak tube can waste ten out of ten Aussies or Europeans.

Of primary importance is the aerial and ground. If a sky-wire has been up more than a year, it should be checked carefully. Listeners should make certain that all connections are well-soldered and that bare wire has no chance of grounding anywhere. A tree or a vine may have grown during the summer to the extent that it will touch the wire.

Better still, while the weather continues warm, why not put up a new aerial?

Checking Results

As in most hobbies, DXing offers its devotees some manner of compensation for their efforts. Some listeners point with pride to a growing list of prize verifications, others count valued friendships as their reward. By whatever scale the returns are measured, the summer months offer DXers a grand opportunity to check on their results and count the profits against the losses.

"Checking through my back copies of RADEX a few days ago, I came upon a letter of mine which peared in the September, 1935 issue," relates Evan S. Morrow, 2161 Ashland Ave., Detroit, Mich. "This reminded me that I have been DXing for about a year. When I last reported, I had heard 113 stations and had verified none. Now, I have heard 470 and verified 22. My best catch during the year was the 100-watter, KPQ, Wenatchee, Wash. The nicest veri came from WTFI, which was heard during the Mystery DX Contest. WEOA, Evansville, Ind., vises that it will verify for return postage. A few issues ago, someone reported that WMBC was one of three out of 35 stations reported to on a frequency check which had not verified within three months. They verified a report for me four days after it had been sent."

"Using a 6-tube Philco Model 89L, I have just completed my first season as a DXer," admits Robert Patterson, 2119 Kenwood Blvd., Roanoke, Va. "Veries have been received from Radio Normandie, LR1, LR4, LR5, CFCT and CKOV. I am still waiting for LS2 to come through. Next season, I have high hopes to verify every continent on the BCB. Why not make it a rule that all reports should include the make and model of the receiver used by the DXer? If a good catch is reported for a small set, I am very much interested; but I won't lose much sleep trying to duplicate the reception of a 23-tuber. Incidentally, what make of set does Charles Hesterman use?"

According to our last report, the "Saskatoon Skeeter" uses a 12-tube

Charles Hesterman, "The Saskatoon Skeeter" with his 12-tube Canadian Westinghouse super.

Canadian Westinghouse super. A picture of Mr. Hesterman and his receiver is included in this issue.

Cubans Do Verify!

Warren E. Winkley, the Ahwahnee, Cal., DX addict, offers concrete evidence that all is not what we might think down Cuba way. "New veries have rolled in from CKFC, KRNR and CMQ," he writes. "The verie from CMQ is the fourth from them. Considering the average idea about the Cubans, that is a bit unusual. Since my last report, I have been fortunate enough to log as new stations KRNR, KELD, CFRN, KSLM and KASA. That brings my log to exactly 690, which pleases me somewhat as I am 'handicapped' with an eight year old receiver, incessant static and a location remote from most of the stations."

"In a period of approximately 13

months," summarizes Julian Schaefer, 2036 West 83rd St., Cleveland, Ohio, "I have heard 750 stations, of which 593 are verified. During the past seven months, I have used a Midwest 16, on which all of my best 25 catches have been logged: KVL, KIT, KXRO, KFIO, KRNR, KAST, KORE, KIEM, KFXM, KXO, KERN. KDON, KRE, KGFJ, KWG, KUMA. KSUN, KGAR, KGEZ, KFXD, CFCT and CKOV. All are verified. Critics said we had a poor season last year, so I should do a lot better this winter."

"By logging 20 new stations to bring my log up to 436," advises Vernon R. Grassie, P. O. Box 213, Duncan, B. C., "I wound up a very fair DX season. Latest veries are KALB, 3YA, 4YA, WGCM, KUMA, KGCU, WAAW, KSLM, KGY, KSAC and KPAC. New catches include KAST, KFIO. WWSW, WCAT. WTAL. KLUF. KRLH, WCAD. KNET. WHBC, WCAP, KROC, WMFF, WGCM, 3GI, 2NC, 2UW and 2AY. 2AY, the 100-watter, was quite a surprise, believe me! I copied a report on them and hope I get a verie." We do, too, Vernon!

"After two years of DXing," greets Harry V. Adams, Bay View, Digby Co., N. S., "my log shows a total of 575 stations, of which 124 are verified. Trans-Atlantics logged this past season were Radio Normandie, Bordeaux, Rennes, Cologne and Poste Parisien. Of the South Americans, I heard LR1, LR4 and LS2. Best veries in North America were CFJC, KFIO, KORE, CJOC, KIRO and KICA. I am using two receivers alternately for DX work—a three tube Westinghouse 53 and a four tube Grimes super."

"At the end of my third season of DX on the broadcast band, I have logged 582 stations," reports Clifford Van Tassell, 138 Washington Ave., Pleasantville, N. Y. "Some of the better catches include Radio Nor-

mandie and LR1, while others heard well but not reported were LR3, LR5, LS2, CX26, Poste Parisien, Bordeaux Lafayette and West Regional at Cardiff. A report is out to LR4 and YV1RC has been verified. Of the Aussies, 4QG and 3LO were weak but positively identified. It has been my experience that TA's are best heard the latter part of December and through January. I tune for them between 2:00 and 3:30 A.M., but fellows on the coast prefer the late afternoon and early evening."

"I have been DXing since September, 1935 with a six tube Philco Model 620," offers Jack Horner, N. Market St., Elizabethtown, Pa. "My aerial is a Philco all-wave, running NE by SW. In this season, I have logged 429 stations, with 112 of these verified. My best catches are LS2, LR4, LR5, TGW, KGIW, KFVD, KROW, KIRO, KFAC and KGFF."

Verifications Again

As might be expected, the question of verifications continues to pop up unexpectedly. In the Midsummer issue of RADEX, Howard L. Spies asked the question, Why Verify? He gave his reasons for believing that the collection of verifications was an unnecessary part of DXing. In another section of this issue, John De-Myer, who might be classed as an expert, takes up the torch for the verifying brethren.

As far as we can determine, a DXer's policy in regard to veries is pretty much a matter of personal preference. Some listeners obtain a great deal of satisfaction merely by hearing a station, and no end of verifications, confirming what they have known all along, can increase their pleasure in a good catch. To these DXers, the process of tuning a new and distant station appears to be their primary source of enjoyment.

Then, too, the process of procuring verifications is often a rather expens-

ive measure. Cards, letters, stamps and repay coupons can run up a tidy bill during the course of a season, and not every listener is in a position to shoulder such a burden. If a verification means nothing to him, he would be foolish to go after them.

Reports from readers seem to indicate, however, that a large majority of listeners want to confirm every station heard. While some DXers will limit their verifying efforts to foreign catches and real DX, most of them agree that the, "You heard us!" message on a verie is quite worth while.

While few of us are inclined to doubt a report of a station heard, a verification does lend a convincing stand to any report. To have heard a station at a distance with sufficient clarity to make a verifiable report is often a fine achievement, and a confirmation may be classed as a welcome reward for time and effort.

Counting Veries

Whenever the subject of verifications is brought up, there is usually raised the question of how to count them when we have them. The matter has been discussed pro and con, time and again, and we shall probably never arrive at a system which will meet the approval of all listeners.

As Paul Sampson, 1820 College Ave., Regina, Sask., points out, "Counting stations is purely a personal matter. The reason I count by calls is that there is less chance of including a station twice when it should be counted but once. As far as I can see, there is only a slight chance of error in this method. After all, logging is a matter of individual honesty."

"If every DXer had a chance to air his pet system of counting verifications," remarks Charles E. Roach, 816 North 7th St., Camden, N. J., "there would be as many systems as there are DXers. To my mind, a verification is proof of reception of a station, pure and simple, but only proof to you, personally. From the signatures on the verifications I have received, it is understood that most of them are taken care of by office clerks and slip-ups are bound to happen. But as long as you honestly reported your station, you are entitled to your verification and you may count it as you will."

Much as we dislike to admit it, it is impossible to get around the fact that there are a few listeners who have no scruples when it comes to going after a verification. How

"Don't stay up all night DXing," says R. T Coales, 54 Chelsea Road, Southsea, England. "Do your SW listening in comfort." The cup was first awarded in the British IDA SW conlest and was won by Mr. Coales.

they can obtain any personal satisfaction for a verie obtained in an underhanded manner is difficult to appreciate, but they continue to apply for their cards and letters and we suppose they have some use for them. Perhaps they enjoy the knowledge that they have been able to put something across on a station.

"I am acquainted with managers and engineers of many stations," supplies Robert D. Wade, 3704 Tyler, Amarillo, Texas. "Not so long ago, a 1000-watt station in Texas failed to go on for its FCC check because of unforeseen transmitter difficulty. Believe it or not, they received nearly

50 reports requesting a QSL card for that broadcast. The chief engineer and managing director of this station are intelligent men, they enjoy a good report and, to my knowledge, they will go out of their way to assist an honest DXer. I talked with the engineer after these reports came in and his attitude was expressed in five words: 'That ends the verification business.' He later qualified that statement with, 'Well, if I get a report that checks the log, I'll verify; but I still think it's a waste of money.' With such monkey-business going on, how can we expect to have him think otherwise?"

Postage or No

During the past year, many listeners have complained that they sent a three-cent stamp with their report and received just a card of verification. If the station chooses to keep two of the three cents to cover some of the cost of verification, we feel that they are entirely within their rights. It is no small task to sort out letters, check reports with log and write replies. When a station has counted the cost of that labor and added on the expense of a letterhead, we doubt if their margin of two cents leaves them any profit.

Edward R. Peterson, R. D. 2, Box 176, Ventura, Cal., expresses his views: "One night last winter, I heard the Honolulu stations, KGU and KGMB. I wrote these stations, enclosing three cents in coin. KGU sent me a penny postcard, while KGMB never replied. I feel that if a station calls for reports, they should pay the postage on veries; if a listener hears the station and wants a reply, he shall pay the postage."

"Isn't it only civil to enclose a stamp when asking a favor of someone?" queries Mrs. A. C. Johnson, Henry, S. D. "Then, why is it any different when writing for a verifica-

tion? I should think that anyone who writes in for a confirmation would be more than glad to send along a stamp. The stations give their time and it certainly costs them something. The stamp covers the postage only. Why not blacklist all who refuse to enclose stamps."

We tried a variation of the black-list idea when we printed the names of the postcard reporters on the WCSH transmission during the Mystery DX Contest last winter. Just what effect that had is hard to say. We did receive an apology from one of the listeners. He pleaded ignorance of the rules of decent DXing, saying that he had printed a batch of report cards and couldn't afford to throw them away.

Contest Winners Report

"I can't thank you enough for the splendid Scott receiver which I was fortunate enough to win," acknowledges S. R. Lewis, R. D. 3, Box 660, Toledo, Ohio. "It certainly is a wonderful set and I am more than pleased with its performance. While I haven't had much opportunity to give it the works on the broadcast band, it sure is the berries on short waves. Selectivity, sensitivity and tone are perfect!"

"I received my Hallicrafters receiver O.K.," advises Cleland Herman, 602 S. Cedar St., Owosso, Mich., "and I am getting much enjoyment out of it. I am 18 years old and started DXing in 1932. My first verification was from XED, Reynosa. I now have about 700 veries from all parts of the world."

"Thanks very much for the prize," pens Bill Vornkahl, Westport, Conn. "I sure consider myself both lucky and unlucky. I missed WNEW on one of their transmissions as well as WNBX, two of the easiest-to-get stations for me. I sure did want that Hallicrafters, you know how it is. The old Majestic sure does need tubes, the old ones being three years

A "Miss Radio" is chosen every year, but the radio ladies are becoming so attractive that this year it was necessary to choose three Miss Radios. Helen Marshall, a taffy blonde weighing 113 pounds, was chosen as a beauty of the "outdoor girl" type. Harriet Hilliard and Dorothy Lamour are co-holders of the title.

old. If you have another contest next year, just reserve the first prize for me. If I can get third prize with old tubes, you can judge for yourself what I will do with new ones."

"I want to thank RADEX for the subscription which I won in the contest," notes William Tawzer, Jr., Glenshaw, Pa. "The first issue arrived the other day and it certainly beats buying it at the newsstand."

"Many thanks for the prize," briefs Harry M. Gordon, 317 East 10th St., Erie, Pa. "It was a grand contest and I know that the Candlel Code Course will add to my enjoyment of radio."

Another Contest?

Readers seem to be unanimous in the opinion that the contest should be repeated this season. While it is admitted that our setup was not perfect last year, we have received many suggestions and believe that a possible repetition of the event will interest a greater number of listeners.

It has been suggested that the contest be conducted for three hours a night, one or two nights a week, for two or three weeks. While this would undoubtedly be a bit easier on the listeners, we cannot help but feel that it would offer too much opportunity for contestants to compare notes. We dislike to admit such a possibility, but the last contest offered ample proof that we must guard against any such opportunity. Of course, it would be possible to send in reports for each week's reception immediately, but that would complicate the work of the judges too much to be practical.

Therefore, believing that a prize worth having is worth trying for, we are going to repeat the three successive day idea and have tentatively set the date as the week-end of February 20-22. This would mean Saturday and Sunday mornings, with the addition of a holiday on Monday. We believe that this will permit the greatest number of contestants to take part. Accordingly, DX clubs are requested to refrain from scheduling any special programs on those mornings. In the event that any stations volunteer a dedication, perhaps the clubs concerned could suggest another date.

At present, we are inclined to favor the hours of 2:00 to 6:00 A.M., EST, as we had last time. However, the problems confronting the Pacific Coast listeners will be remembered and we feel that they will have an equal opportunity with the Eastern listeners. If necessary, we will publish a list of Western stations which will not take part. This may be necessary since so many stations on the West Coast will still be transmitting regular programs during the first hour or two of the contest.

Also, to take away the advantage which the Central states may have

in position, we plan to give a bonus of five points for each station more than 2000 miles distant. In this way, listeners living East of the 85th parallel and West of the 110th, will make up in points what their locations may lose in stations.

Every letter received so far has been of the opinion that a small fee to cover costs of printing standardized report cards and summary sheets will be justified. We are planning, therefore, to make up a package which will include about 100 report cards, a summary sheet and a complete list of the rules. The cost has not been determined definitely, but will probably be about twenty-five or thirty cents.

We hope to have an even more attractive list of prizes this year and believe that every DXer will find it worth while to enter. An innovation will be in the form of place prizes, which will go to listeners who place 25th. 50th, 75th, 100th, etc. In this way, a listener will not have to rank among the top winners to be assured of a worthwhile award.

It has been suggested that an informal competition be staged among the radio clubs to see which organization can bring forth as contestants the greatest percentage of its members. If the clubs are willing to cooperate in this manner, we will try to arrange a prize for the winning club.

Comments and suggestions on this tentative plan for the contest are requested and it is hoped that all readers will let us have their ideas.

From Esteban Parra, manager of the new Mexican station XEP at Juarez, Chih., comes an announcement of a forthcoming test program: "Since we are a new station on the air," he writes, "you probably do not know much about us. We started on May 10th of this year and, so far, have had very good results on our test programs.

"Knowing that you are always interested in securing DX programs for the members of different DX Clubs. we wish to advise that we will put on a DX program between 3:00 and 5:00 AM, EST, on Saturday morning, September 12th. Being a new station, we are naturally anxious to receive as many letters as possible and, to insure this, we promise to answer each and every letter received. Those that check with our programs will be verified. Those that only report our programs and do not send a detailed log, will receive only an acknowledgement.'' Station XEP operates on 1160 kcys. with 500 watts power.

From G. E. Bott, 507 Southampton St. E. Hastings, N. Z., comes word of two new goals for DXers. Station ZJV at Suva, Fiji, is now operating on 880 kcys with 400 watts power, while FJP, Naumea, New Caledonia, is using 500 watts on 600 kcys. FJP, according to a verie sent to Mr. Bott, operates between 0730 and 0900 GMT, which would be 2:30 to 4:00 AM, EST.

Attention is called to the regular DX club broadcasts from KGGC, San Francisco, 1420 kcs. which are now on the air at a new time, 12:45 to 1:00 AM, EST.

One reader who will have an opportunity to hear many new stations this summer is Dr. M. Dean Miller, 73 E. Exchange St., Akron, Ohio. "Am leaving shortly for a vacation which will take in the Gulf Coast, the Southwest, the Pacific Coast from San Diego to Seattle, and then through the National Parks. Will have a radio in the power car and in the trailer. Ought to be able to log plenty of new stations with this layout, but doubt if it would be fair to count them." Perhaps Doctor Miller will favor us with a report on the type of reception he experiences during this long journey.

It has always been a question in (Continued on page 58)

Radio Troubles and REMEDIES

• • • By the TECHNICAL EDITOR

Y RADIO is an Emerson, model 105. It has three connections on the back, one for the ground and two for a doublet. When I have the two wires of the doublet connected on these many of the foreign stations do not come in at all. But when I connect only one wire of the doublet I have twice as many stations. It seems to me that I ought to have stronger signals when both doublet wires are connected than when only one wire is attached.

Look and see whether one of the doublet terminals on your radio set is grounded to the ground terminal by a small piece of wire. If so, this wire must be either removed or cut before the doublet type of antenna can be used. It may be that you are partially grounding your antenna when you connect both ends of your doublet leadin to the two contacts on the receiver. When you connect one side of the doublet, which is somewhat like a single-wire antenna at that time, you most likely attach it to the single antenna post and it works fairly well in this position.

If the doublet terminal, mentioned above, is not grounded, then we suggest that a careful examination of the antenna coil which is attached to the doublet terminals, be made for grounding or poor contact. On the other hand, is your doublet perfect? Are you using a set transformer or simply a doublet with twisted leadin? This latter does not always work so well with some types of receivers, and it may be that a set transformer will be necessary.

Antenna Troubles

I wish to erect a new antenna to use with my new all-wave set that covers five wave bands, including all the short waves. I am particularly inclined to the RCA World Wide antenna, but my roof is of such a size that the antenna

cannot be crected as recommended. My roof is only 36 feet long, and the new antenna has a total length of about 45 feet. Can I run the short portion and part of the long portion flat on the roof and drop the remaining part of the long portion down on an angle from the end of the roof?

The manufacturers of noise-reducing antennas have provided certain arrangements of assembly which must be followed in order that good results will be obtained. We do not feel that the scheme you suggest will be so very satisfactory, yet it can be attempted with fairly good results. There are a number of antennas now being offered by manufacturers, all of which vary somewhat in their es-

Harriet Hilliard, Robert L. Ripley and Ozzie Nelson are all enjoying vacations now but will soon be back on the airways. Ripley is flying around the world, crossing the Atlantic on the "Hindenburg" and the Pacific by Clipper Ship. Here Harriet is telling him that once she hit a note THAT high, "Believe it or not."

sentials. Perhaps one of these will fit in with your situation.

If you have no need to eliminate man-made static from nearby electrical sources, the doublet type of antenna is not so necessary on the short waves. Most any type straight, or "L" type, antenna will do. The seemingly peculiar lengths of antenna tops that so many are using are the result of computations which give to the antenna itself the greatest resonance on the different shortwave bands and the harmonics of other bands. There is no such thing as the ideal length of antenna to fit all wave bands. So if you make some slight alterations it may be that you will experience no great disar' natage. The principal thing is to reduce man-made static.

Head-Phone Adapter

How can I use the Perfect headphone adapter with my new 18-tube Midwest receiver which has two sets of power tubes? I imagine I will have to place several adapters under the power tubes.

This magazine has prepared an instructive leaflet, which you no doubt have seen mentioned in our pages, dealing with the use and connection of the Perfect phone adapter. Write for a copy, and if there is any additional information you may require, we shall be glad to point out anything which you may not understand.

Scott Speakers

Can you advise me as to whether the single 12-inch auditorium speaker furnished with the Scott receiver will be sufficient to bring out all the tone, or will it be best for me to get the high-frequency speakers also to use in conjunction with the big speaker?

The single speaker is all that is needed for any receiver. But, if you are very particular about reproduction and distribution of the highest notes, the additional smaller speakers are of very great value. The com-

bination of different-sized speakers gives the listener a greater fidelity of tone reproduction, but many people are perfectly satisfied with the tone quality from a good single-cone speaker.

The additional, smaller speakers reproduce the highest notes, and because they are set at an angle away from the large speaker, the high notes are thrown out to each side of the cabinet so as to get a better distribution throughout the room. We think that the single speaker will give you most of the tone to a satisfactory degree, but, of course, the additional high-frequency speakers will give you all the tone that it is possible to obtain from present-day radio receivers.

Kolster K-20

I recently obtained a Kolster K-20 set that was built in 1928 but has been used very little. The set is quite sensitive, for when locals are off it picks up foreign broadcast band stations, but it is not very selective. Do you think that shielding and tuning the t-r-f circuits would help? When I use a wave trap it makes the set more selective but cuts down sensitivity so much that I cannot get anything but the local stations.

This receiver is a tuned-radio-frequency circuit using three type 26 tubes in the three radio-frequency stages. There is a vario-coupler device that tunes the antenna input. It is not very selective, but cannot be used with a wave trap to any advantage. It is a circuit that cannot be helped in this design. A set having four tuned stages should be highly selective, and perhaps this first antenna tuning stage has something wrong with it. Check it over for proper action. You might try replacing it with a simple antenna tuning coil — primary of 18 turns and secondary of about 70 turns, or make it an exact duplicate of the r-f coils that follow in the circuit.

Fibber MoGee and his better half, Molly. heard over the Blue Network Mondays at 7 p.m., EST, find their half hour program of comedy and music steadily increasing in popularity as it enters its second year. The roles were created by Jim and Marion Jordan. This team was on the air more than a decade before the big chance came that landed them on the present series.

This circuit does not make provision for careful tuning or aligning. It might be well to purchase four small trimmer condensers and place one across each of the tuning condensers. With the trimmers you can adjust each tuned circuit so that all condensers on the tuning rotor will tune each r-f coil to maximum resonance.

Check over each of the grid leaks and grid condensers placed in the grid circuit of each of the three type 26 tubes as well as the type 27 detector tube. Perhaps replacement of these units will increase the selectivity. How are the type 26 tubes? These tubes can be replaced with type 24s if provision can be made to supply the high voltage needed for the filaments, and circuit changes are made to take care of the cathode and the plate voltages.

Perhaps shielding of the three r-f coils will help, but the manufacturers would have done this if they thought it necessary. However, shielding does not cost much, and, in fact, you can replace the present r-f coils with new ones already encased in shielding can. They may be purchased from most any mail-order radio supply concern. Do not attempt to shield the tuning condensers, as you will alter the tuning and established capacities of the condensers.

Noisy Location

My home lies between an electric line and a railroad. There also are telephone and telegraph lines within 25 feet of the house. My antenna is 40 feet in length and is 40 feet from the railroad but not exactly parallel to it. I have much difficulty in tuning, and get lots of noise mostly in the evening. Then we hear the telegraph clicking most of the time. I have a Stewart-Warner, and hope you can make some suggestion that will help me.

About the only solution is that you try a noise-reducing antenna, such as the Lynch, RCA, Silver, etc. But this will not help you any unless you can place the antenna top far enough away so that it will be outside of the electric fields of the lighting and telegraph lines.

We suggest that, since the house lies between the sources of interference, you erect the antenna at right angles to the railroad and its parallel wires. Place the antenna proper as high as you possibly can. The leadin can be very long, if need be. You have our sympathy, for certainly you are in a bad "spot", and we trust you can be spared at least some of this annoying interference.

Philco 511

I have a Philco model 511 and have been having difficulty in balancing and neutralizing this set. There is a trimmer condenser connected across the first antenna coil and its tuning condenser. This seems to be the only trimmer available for aligning this set. When I balance this condenser at full capacity it creates an awful fluttering sound, and changes the tunable area of the dial. Can you give me some definite advice?

The circuit used in this radio embraces three stages of tuned radio-frequency amplification. Balancing of these circuits is not easy to achieve. We suggest that the services of a skilled service man be procured for the operation of neutralizing and aligning. The average radio owner cannot perform this job because of the peculiarity of the set and its lack of manually adjusted units.

Any failure or changes in the tiny condensers shunted across the tuning condensers of the last two type 26 tubes will upset the capacity and balancing of the circuit. If you wish further advice about this circuit and its parts, and really mean to do the work yourself, write to the Service Division of the Philco Corporation, Allegheny Avenue and "A" Street, l'hiladelphia, Pa., mentioning RADEX, and give your query in brief, to the point statements. We feel that they will gladly advise you about this older model of theirs.

Loop Antenna

I am using a model 60-M 5-tube Philco and would like to use a loop directional antenna in conjunction with the regular antenna in order to overcome the interference from other radio stations. Is that possible, and if so would you tell me what type of loop aerial is best? My present antenna is a 60-foot wire running NW-SE, with the leadin at the NW end.

You cannot use a loop antenna in conjunction with a regular antenna. If a loop is used, the other antenna must be disconnected entirely from the receiver. The interference you mention is probably what is called heterodyne interference, and is caused by two stations operating on

nearly the same frequency and being received by a set that is not sharply selective. A loop antenna, if used with a good heterodyne receiver, should help separate these interfering stations if they are located in sections of the country that are not in the same straight line with the radio receiver.

Make a loop antenna on a square frame about 6 feet to each side. Wind on about five turns of No. 20 insulated wire, and attach the two free ends to the ground and antenna terminals of the receiver, with a ground wire connected as usual. A large variable condenser connected across the ends of the loop antenna might also help in the tuning.

The loop or frame is hung upright, suspended from one corner and is rotated through the different points of the compass. It will receive best when its plane lies parallel to a straight line connecting the receiver with the broadcasting station.

Gutter Antenna

In connecting an east-west antenna in the hopes of bringing in the small west coast stations I discovered that the metal gutter around my roof made an excellent aerial. I had supposed it was grounded, but apparently I am wrong. Is it true that this gutter can act as an aerial, or is it a freak condition? If it performs as well in most other cases, the stunt might be a help to DXers who do not have space to put up a regular antenna.

Of course, any piece of metal, anywhere in the world, if it is separated from actual electrical contact with the earth, will act as a radio antenna. This metal does not have to be shaped in the form of a piece of wire. Wire is light and convenient, but does not have to be used. Metal rods, pipes, tapes and beams work just as well. Such is the case with your rainspout gutter around the roof. In your case the gutter is not grounded, but is evidently separated

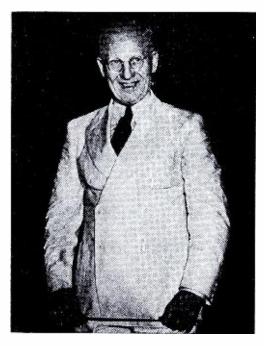
from the metal down spout. However, in spite of the technical fact that any piece of metal is a radio antenna, we still like 'a good, wellinsulated wire aerial.

Loose Connection

In my new Philco 116X almost everytime someone slams a door nearby or jars the set slightly, there is a loud crackling sound. This persists for some time, and hitting the cabinet once or twice is sufficient to stop it. The noise is just as bad when no ground or aerial is connected. Can you tell me what this might be and if other owners of this set are experiencing the same trouble?

This trouble is not the fault of the set in general, for it is obvious that a loose connection or bad tube is the cause. It may be a little difficult to locate, but we suggest that the chassis of the receiver be removed from the cabinet and placed where it can be examined while still connected to the speaker so it can be operated. Do not attempt to turn on the set with the speaker plug removed.

Tap each of the tubes, and if the noise is observed when some particular tube is tapped, replacing that tube should stop the annoyance. If the tubes fail to give a clue to the trouble, then a further and more complicated search must be made.


It is necessary to check all parts that are in electrical contact in order to make sure that the contact is perfect. Tap all soldered joints with a small wooden stick, and touch all wires that lead from coils and transformers. An imperfectly grounded wire and metal shield, if loose, will give rise to noises whenever the receiver is jarred. A tube might be in poor contact with its socket, and the contact springs may need a bit more tension.

If you will go over all parts of the circuit it will not be long before a loose or broken wire or contact will be discovered. Remember, too, that intermittent grounding of the antenna, or bad connections in the ground or antenna leads, will cause this noise.

Abox Eliminator

I have an Abox "A" eliminator, but its small, central electrode is worn away. I have tried fastening this small bit of metal to a wire and dropping it into the solution, but it failed to work. Also, what solution is used and where can I now obtain the chemical and electrode to repair this eliminator?

This eliminator is also similar to the Balkite unit, and replacement parts for one will work in the other. The Balkite model, which is similar to yours, is type A-6. Some units use different electrolytes, but a saturated solution of ordinary borax is the most commonly prescribed material. The electrodes of many battery eliminators are lead and aluminum. An examination of the wornout parts should show if they are

Arthur Pryor, America's foremost bandmaster, has returned to the air for his first series in several years. This veteran is currently featured in the Cavalcade of America in Music on the nationwide Columbia network from 7:30 to 8 p.m., EST, on Wednesdays.

made of these two metals. In some Abox and Balkite units a small pencil of tantalum is used as the central electrode, and it may be that this is what you need.

You might experience some difficulty in procuring the metal electrode, but the Federated Purchaser Co., 25 Park Place, New York City, N. Y., which has handled these repair parts, might have material still in stock.

Aligning Set

I have a Victor model 32 which I wish to align. Is it proper to have the antenna on when doing this work; also the volume control on full? Is the plate of the 45 tube gone when the output meter does not respond?

You will find the alignment of this set rather difficult. It also requires neutralizing. There are four small neutralizing condensers, and it may be that you have mistaken them for trimmer condensers to be used for aligning. Neutralizing the set and aligning the tuning are two different operations, both of which are difficult. We suggest that you place this work in the hands of a competent service man who has all the necessary tools and meters.

The antenna must be on when the set is being aligned, as signals are tuned in at three points, the upper end of the dial, the lower end and the middle. Adjustments of the trimmer condensers or the slotted end plates of the tuning condensers, are made on each different signal. The volume control is turned low so that the difference between maximum signal intensity and usual signal volume can be detected by the ear if a meter is not used.

When an output meter, placed in the plate circuit of the 45 tube, does not respond it indicates a dead tube, a broken circuit or failure in some way for the plate voltage to reach the plate of the power tube.

The McMurdo Silver MASTERPIECE IV

● ● By R. B. OXRIEDER

O SUM up in a few words my reasons for liking the Masterpiece IV is a bit difficult, but can best be done by saying that I prefer a set on which I can tell to what station I am tuned by means of the dial setting instead of having to wait for the announcement every time.

Of course I demand tone, sensitivity, selectivity and all the other things that go to make up a good radio, but nearly any good modern set has excellent tone quality and most of them have good sensitivity. However, when it comes to selectivity and the ability to re-log stations by correct setting of the dial, these are features which can be judged quite conclusively by comparative tests.

On the lower frequencies of the broadcast band the dial spacings are sufficiently large that the operator can tell to what frequency he is tuned. However, when he gets down on the shortwave bands it is an entirely different matter.

On most receivers which I have tuned or examined the band from 6000 to 6140 kcs occupies a space anywhere from 3/32nds to 1/8th of an inch. It is evident then, even if shortwave stations were all separated by 10 kcs., there would be in this space, 15 channels, and imagine the difficulty of splitting 1/8th of an inch into 15 parts by eye reading accurately. As a matter of fact there are more than 15 channels in this band; I have logged 30 channels and I can re-tune any of the 30 channels by careful adjustment of the dial.

In order to explain how this is done it might be well to describe the dial. The face of the dial is a large circle, with a large hand pivoted at its center, one end of which is used to read on each half of the dial. five tuning bands each occupy 180' degrees of the 360 degree circumfer-In addition there is one scale which is numbered throughout the entire 360 degrees and is calibrated simply from 0 to 200. There is a smaller hand which passes over this While the large hand 0-200 scale. moves once across the dial (180 degrees), the small hand goes completely around the dial eight times (8 times 360 degrees) with the result that it spreads 1/8th of an inch on the main dial to about 2 inches on the 200-division dial. With this second hand it is possible to re-log accurately time after time, so that if you have a station at a setting of 491/2 one day, and with the big hand in the same section of the main dial, you come back to 49½ the next day, you will get the same station again if it is still on the air. I have found that I can read within one or 2 kcs. on the 6 megacycle band.

Without the bandspread, imagine trying for HJ4ABE on 6092 with some 30 stations operating within 1/8th of an inch of him! The bandspread is also useful in telling you when you have a new station, for when you get a station on a dial reading you haven't had before, it must be either a new station or a new frequency for an old one.

The selectivity of this set is so good that with reasonably equal signal strength signals 2 kcs. apart are separated: for example, easily HJ3ABX and W2XE on 6122 and 6120 respectively have been heard; likewise with HJ3ABH and COCO on With COCD on 6012 and 6010. 6130, VE9HX on 6134, HJ3ABP on 6136 and W8XK on 6140, all playing at the same time, each station has been logged in turn and copied com-On the broadcast band in a side-by-side test with another set, the Masterpiece brought in a 250-watt Cuban between two 50,000 watt stations on 810 and 820 when the \$180 production set would not even separate the two 50,000 watt stations on the same antenna.

Each of the controls on the Masterpiece (volume, tone, sensitivity) has graduations so that exact conditions may be duplicated later if desired. For purposes of signal comparison this is invaluable.

My average log during the past DX season was from 160 to 200 shortwave stations a month. Many of course were repeats, but each month there were a lot of new ones. number does not include amateurs. police stations or the like; it was mostly s.w. broadcasters plus commercial phones such as OCI, KKQ, RIO, and experimental stations like On the broadcast DZA, DZE, etc. band at least one station was logged on each channel, in addition to several split frequency channels. Amateurs and police calls have been too numerous to count, or at least 1 didn't bother to count them as I am more interested in the broadcasters. However, I have been around the world with the amateurs and they are there for anyone who wishes to hear them.

Some of this may sound as though I am bragging of my personal accomplishments, but this is not so; I neither designed nor built the set. I just tune it. And anyone else with similar equipment can do the same.

The Masterpiece IV is a precision instrument that will perform any reasonable requirement asked of it, from listening to a high quality local program for entertainment, to reaching out to the far corners of the earth for new stations.

* * *

The new station in Middleboro, Ky., on 1210 kcs. is still under construction, but already it has had two call signs. It was first given the letters WLIN, but within a week or so this was changed to WLMU. It is owned by the Lincoln Memorial University.

Meeting the ARTISTS

• • • With BETTY

F Gus Haenschen had done as his parents wished he would now be a mechanical engineer instead of one of the most popular maestros on the air. This NBC conductor had all the advantages of a musical education, commencing when he was seven, but by the time he earned his B. Sc. in Mechanical Engineering at Washington University he had decided to forget monkeywrenches and devote all his time to his music.

His first dance band was organized while he was still an undergraduate, and it had so many assignments that he soon found he was conducting an orchestra booking service. In his spare time he mastered the cello, double bass and cornet, and wrote the music for three college shows.

During the Great War Haenschen served in the navy, spending five months overseas and earning the rank of ensign. After the war he was entrusted with the task of organizing the recording division of the Brunswick-Balke-Callender Co., and when Brunswick started on the air it was only natural that he should organize and direct the orchestra for the Brunswick Hour of Music. He has been on the air ever since, celebrating this year his 14th anniversary in radio.

He is tall, blonde, curly-haired and affable. His studio habits are quiet; he sits on a high kitchen stool while he serenely directs his men, never using a baton. His athletic endeavors are confined to swimming. For relaxation he plows or does the chores at his farm near Norwalk, Conn., or dabbles in photography.

Gus H. is responsible for the success of numerous stars, one of the most notable of whom is Frank Munn. He met Frank Munn when

the singer made several recordings for him. When the director went into radio work he took the popular tenor with him and they have been together ever since.

Peter Van Steeden

Peter Van Steeden's radio career began more than 12 years ago when he and his band appeared for an audition at station WEAF in New York City. Everything went wrong at the try-out; music fell on the floor. the cornet player missed a cue and then the second violinist followed Although the audition lasted suit. only 20 minutes, it seemed like hours to the boys. After such a poor start it is not difficult to imagine their surprise when, a week later, the studio called them to report for a station assignment.

Van Steeden made his first appearance as a musician at a recital staged by his music teacher. Peter, then 8 years old, played a piece called "Cherries Are Ripe," and he says that they went sour. As he grew older he played in several amateur events, just for the fun of it and it wasn't until he won a silver loving cup at a contest in the Bronx in 1923 that he began to think seriously of music.

His debut was made at the Peek Inn on Broadway, then followed a series of radio programs over the NBC during which he conducted for such artists as Fred Allen, Jack Pearl, Ray Perkins and now with Stoopnagle and Budd.

Sidelights: He was born April 3, 1904. Weighs 160 pounds and is 5 feet 10 inches tall. Has written several popular songs, the best of them being "Home." His parents wanted him to be an engineer, like Haenschen, but Peter says if that ever happens it will be in the form of

musical engineering.

Peter is married, has three youngsters, and his ambition is to take them all on a trip around the world some day. He is modest, ambitious but conservative, and looks like a typical young business man. He used to be superstitious and carried a silver dollar all the time as a good luck charm. When his luck changed he threw the dollar away, and doing that brought his good luck back again. (Some people think they are lucky just to have a dollar).

Tune for Van Steeden's music on the NBC-Red Network at 8 p. m., EST Wednesdays—"Town Hall Tonight" with Stoopnagle and Budd.

*

* *

Fame, once acquired, is hard to keep. Some of the most deserving never achieve it. And some people have it tossed in their laps. Van Steeden's audition was a failure but he won success nevertheless. A certain feminine star, not quite as famous now as she was a few years ago, got her start by fainting as she approached the microphone; the person in charge felt she fainted so beautifully she must be able to sing. A story was recently told of another director, who, making the rounds of the night clubs, noticed a shapely dancer.

"Can you sing?" he asked her.

"No."

"Can you read music? Do you play any instruments?"

"No. I just know I like to dance."
"Did you ever lead an orchestra or

a band?"

"Heavens No!"

"Fine. I am going to headline you as conductor of a girl's orchestra."

This girl is leading her own band now, a great success.

Of No Importance

Gracie was busy watering the geraniums she had planted in an old CBS microphone when Betty called on her. It was known that George and Gracie have been selling their scripts to the French Broadcasting Co. to be aired from Paris in French; we wondered what Gracie thought about it.

Before the interview started Miss Allen picked up a basket and began to knit

"Knit one," she recited, "purl one, knit two"

"Miss Allen, I came to ask some questions"

"Who," giggled Gracie, "me?"

"Would it be correct to say, then, Miss Grace . . ."

"Yes, that's correct but it isn't very important. We can't go to France so France comes to us—or doesn't it, Georgie-Porgie?"

We tried again. "Miss Allen, how does it feel to know that fifty million Frenchmen are chuckling over your rib-tickling remarks and enjoying the exasperated replies of your Georgie? Doesn't it thrill you to know that you are the rage in Paree?"

"My nefew had a rage once. Knit one, purl one."

(Curtain)

Gracie's quips have become the rage of Paris and it is common now to hear friends in cafes greet each other with the French equivalent of "I think you're pretty, too," and "I bet you say that to all the girls."

In one of her saner moments Gracie composed a Mother Juice rhyme in honor of their French listeners. "We would like to go to Paris, But since America can't spare us, We'll stay right here in the U.S.A. And sing about tomato juice each Wednesday."

Popeye Returns

Popeye, the Sailorman, along with Olive Oyl, Wimpy and Matey returned from Africa and were greeted by their old friends Victor Erwin, leader of Cartoonland Band, and Kelvin Keech. They are now heard on the CBS on Mondays, Wednesdays and Fridays from 6:15 to 6:30 p.m., EST.

Floyd Thomas Buckley has the (Continued on page 56)

A Station For The Nation

SINCE the beginning of broad-casting, radio engineers have been confronted with the problem of providing maximum coverage for any transmitting plant. It was never enough that a station should serve the territory of the town or city in which it was located; it must reach out and be heard by listeners at distant points.

Old-time DXers will recall the effective service area offered by a station in the early days. The first 500 and 1000 watt transmitters did well to put a night-time signal a few hundred miles under good conditions, while a report from a listener a thousand miles away was received with open arms.

With increases in station power and rapid advances in receiver design, trans-continental reception became an established fact under good conditions. The international tests in 1927 proved that it was even possible to span the ocean.

And so stations added kilowatts

The Chief Transmitter Engineer of stations WLW. WSAI and W8XAL, Mr. Whitehouse, is here shown at the operator's control console of the 500,000 watt transmitter. This panel provides complete control and supervision for all the transmitters, starting, stopping and adjusting them, as well as control over the sub-station.

and manufacturers added tubes, and today we may circle the globe from our homes.

But with all this potential longdistance reception, what do we have? The DXers are obliged to sit up all night to hear Europe or Australia, and even then they are dependent upon certain seasons of the year and conditions. Trans-continental reception is possible only at certain hours of the day, and here again the seasons and conditions are important factors. And the average listener, hungry for his daily diet of Amos 'n' Andy or Jack Benny, gets his programs from a station within fifty or seventy-five miles.

The Ideal Service

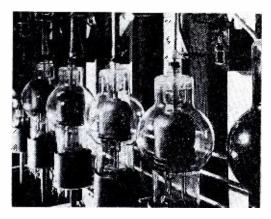
The station engineers themselves have defined the type of reception for which they are striving. Each transmitter is supposed to have a primary, effective service area. Within this area, the signals of that station should be received loud and clear, day or night, winter or summer. At no times should there be fading or distortion, and even the most severe summer static should not render reception impossible.

Obviously, the extent of a station's service area is largely dependent upon the design and power of the station. But even with our giant 50-kilowatt installations, they seldom provide real service beyond a radius of a hundred miles.

It is admitted that the United States offers a definite obstacle to Utopian reception solely because of its size. Our present system of scattering hundreds of small stations throughout the country does afford some sort of reception to almost every listener, but are we getting efficient coverage within reasons of economy?

Most listeners know that European stations are divided into two general classes for national coverage — those employing medium and long wave transmissions. This long wave idea is new to Americans, and so why not look into it further?

Using the Long Waves


A study of letters in European journals seems to indicate that listeners seem to prefer programs from long wave stations, day and night. When the British Broadcasting Corporation built its superpower Droitwich station, they elected to broadcast on low frequencies.

Recently, a survey by BBC engineers of broadcasting conditions in Australia and New Zealand resulted in the report that "national coverage" could be achieved only by means of long wave broadcasting.

In some respects, Australia and America offer engineers similar problems in coverage. In both countries, listeners in sparsely-settled sections are dependent upon remote stations for their programs. Therefore, might not long-wave broadcasting be a solution to many of our own problems?

A survey made several years ago seemed to show that it would. In the first place, it was estimated that day-time distances would be increased for far better coverage and that night-time reception would be cleared up over long distances by the reduction of fading and distortion.

The question of fading, always a prime obstacle for medium-wave reception, was all in favor of the lower frequencies. For a given section of flat country, signals transmitted on 200 meters would begin to fade at a distance of about 50 miles. Transmissions on 300 meters would fade at 80 miles; on 400 meters, at 120 miles; on 500 meters, 160 miles. At the same location and radiated with equal power, signals on 1200 meters would not fade within a radius of 480 miles from the transmitter, while

The mercury vapor rectifier tubes shown here were especially designed for the 500 kw WLW transmitter. They are the only tubes of their kind in existence, and are rated at 450 amperes. Six of these tubes are used in the rectifier of the station.

1500-meter transmissions would increase the "fade-free" radius to 620 miles.

Cost of Coverage

Further, it was brought out that first-class coverage of the United States would require eighty stations of 50-KW power, costing more than \$24,000,000 to build. The same coverage could be obtained by but seven long-wave stations, using 1000-KW and costing but \$4,000,000 to build.

Thus, it would seem that perhaps long-wave transmissions might provide true "stations for the nation" with economy and efficiency.

The nearest approach we have had so far to a nation's station is the giant WLW, the Crosley 500-kilowatter at Cincinnati. By their very slogan one might believe that they intended to cover at least the greater portion of the Eastern and Central states with a clear, undistorted signal.

Possibly a comparison of their present coverage and service on the higher medium-wave band with what might be expected on long waves would throw a better light on the subject.

It was, therefore, a bit surprising to learn that, with the exception of the so-called "Canadian Protest" and its resulting requirement in their radiation pattern control, the WLW 500-KW transmitter has met every expectation and the engineers are very enthusiastic about the results. The use of this power increased their signal over their service area about 3.25 times by actual measurement. It increased their service radius out to most defining values of service by 2½ to 3 times, which resulted in an increase in service area of 69 times.

As far as its commercial value is concerned, many WLW clients have conducted independent surveys and investigations, and have found that the use of this power has surpassed any commercial expectations from their point of view.

The Fading Problem

In regard to fading, J. A. Chambers formerly Technical Supervisor of WLW-WSAI, pointed out: "The particular antenna which we originally used was designed to give the best balance of ground wave service and sky wave service. If all our energy was put into a ground wave signal, this would eventually become a sky wave signal, or become worthless because of the curvature of the earth. Fading is, in most cases, a matter of interference between the ground wave and sky wave signals.

"It follows, therefore, that there must be some particular distance at which the ground wave signal disappears and the sky wave signal becomes the service signal. At this point, there must be an appreciable amount of fading. In the case of WLW, we tried to make the ground wave signal fall off as rapidly as possible, before the sky wave became effective. Thus, it also follows that there is a band of low signal strength at this distance."

The particular distance at which these bands occur depends on the height of the ionosphere. Under most night-time conditions and particu-

Mr. Powel Crosley, Jr., standing at the base of the 831-ft. vertical antenna tower of WLW at Cincinnati. A load of more than 900,000 pounds rests on the seemingly fragile porcelain insulator base. The two porcelain pieces are cup-like in shape with walls less than two inches thick. This antenna rises 250 feet higher than the Washington Monument.

larly in the winter, the bands for WLW occurs at between 162 and 200 miles.

With the original installation, WLW engineers were able to reach an adjustment whereby this was not very serious at this distance and optimum results were obtained in all other localities. However, the Canadian government protested that the station was putting too much signal into the Toronto area. As a result, they were required to develop and install their so-called "suppressor type" antenna.

In general, the only effect this antenna had on their United States service area was to aggrevate fading in the territory around Cleveland and Erie. In spite of this, however, WLW engineers are very much pleased with the results that are being obtained with the transmitter.

The Crosley Radio Corporation has,

on various occasions, considered and discussed the advisability of attempting to improve their service to the American people by the operation of some high power station on the longer wave lengths.

Long Waves Not Available

According to Mr. Chambers, the first and most important reason why neither WLW or any other station tried long waves was simply the fact that the government prescribed the frequencies between 550 and 1500 kcys as the bands on which broadcast stations should operate. The longer wavelengths had already been assigned to other services — largely Army, Navy, shipping and airway services.

"The original development of broadcasting in Continental Europe," continued Mr. Chambers, "was on the longer wavelengths, and it is quite satisfactory for the type of service they are attempting. Since most stations and receivers operate on the lower frequencies, it is only natural that their service should continue in that fashion.

"These longer wavelengths, when compared with the medium waves, have some advantages, but also some disadvantages.

"In the first place, although the ground wave attenuation is much lower at the longer wavelengths, an efficient antenna system is a great deal more expensive. It is also very difficult to build an antenna for some of the longer wavelengths which will achieve the benefits of the longer wavelengths without aggravating fading in some locations.

"Static and other man-made interference are generally worse on the longer wavelengths and, in many cases, this may counteract the reduced attenuation. This is particularly true when it is desirable to cover considerable territory, as in the United States."

Thus, it seems likely that broad-

casting in this country will continue very much as it has in the past. Perhaps the answer for proper national coverage lies in increased power. Certainly the WLW engineers have made good on their claims and expectations.

The Federal Communications Commission has scheduled hearings for early this fall, when applications of a number of stations to increase power to 500 KW will be considered. The results shown by the WLW trailblazing will surely play an important part in these hearings and we may soon find more of these "Stations for the Nation" in various parts of the country.

Why I Verify

● ● By John DeMyer*

W HEN obtaining verifications, it is not my purpose to prove to some "doubting Thomas" that I actually heard a certain station. While most of the DX fraternity consider the possession of a definite confirmation of reception to be conclusive proof that the station was heard, there may be some rare exceptions. At any rate, if proof was necessary, we must agree that a verification is all we would have to show for it.

Verifications may be considered merely as interesting souvenirs of intangible value. I experience the same thrill in obtaining a rare verification that a philatelist does in adding new and rare stamps to his collection. DXers who have a large collection of verifications will agree that each of these cards and letters is an individual work of art, and that they combine to form a beautiful collection. Some prefer to decorate the walls with their veries; personally, I file mine away in a neat arrangement in letter files.

The first step in obtaining verifications is actually to hear the station and to make a comprehensive log of reception. We consider that all honest DXers do this. Unfortunately, we possibly have a few fakers obtaining "confirmations" through any fraudulent method possible. Quite obviously, such a "verification" would lose its value in an authentic souvenir collection. That "DXer" would be cheating only himself. For this reason, we would consider practically all verification collectors as honest DXers.

In the Midsummer RADEX, Howard L. Spies writes an article titled: "Why Verify?" His statements lead one to believe that a sufficient log of reception would be: "I heard your program. Please send me your verification." I say that's preposterous.

I would not attempt to prove him 100% wrong, but would rate it at about 99.44%. Any verification collector would testify that 99 out of every 100 reports of that nature would end up in the waste basket.

He stated that stations are now highly commercialized and, to maintain public good-will, make it a policy of "good business" to issue verifications on incomplete reports. That wouldn't be good business, for certainly WJBK gained no public goodwill by issuing a "verification" in response to a request to get off the air.

Attitude of 2KY

Most stations do have a policy of public good-will and for that purpose maintain a clerical staff to handle mail from listeners. I correspond with an employe of 2KY, Sydney, Australia. Her position with this station is to handle verification requests from overseas, and she tells me that she personally checks each report with the station log and, if the confirmation. merited. issues That would indicate stretching the point of public goodwill quite a bit. Obviously, 2KY would not be interested in advertising Australia farm produce to American listeners.

The Gospel Singer, Edward MacHugh, has one of the largest followings in radio, attracting thousands of letters each week with his friendly, natural voice and extensive repertoire of hymns. Mr. MacHugh has just begun a new series, heard daily from Monday through Friday at 10:45 a.m., EST, over the NBC-Blue chain.

Of course, the station engineers of 2KY are pleased to know that their transmissions are heard in America. We send them a comprehensive log of reception, with helpful technical data on the quality of reception, and in return we receive a station verification. Of course, we should include return postage with our report.

The Hong Kong station, ZBW, was said to have issued a "verification" in response to a request to dedicate a special program to a DX club. That would indeed be careless.

I well remember my first experience in logging ZBW. That particular morning, the program was Oriental in nature and, of course, I could not identify any of the musical selections heard. I did hear one definite announcement in English, With that, and a detailed descriptive log of the

(Continued on page 58)

WHAT'S ON THE AIR TONIGHT

Fill in calls and dial numbers for those stations through which you best receive the three chains. You can then turn quickly to the one that has the feature you want.

COLUMBIA(C)					
Call	Dial				
	i				

ANDITAN	L, Red (R
Call	Dial
	ļ

NATIONAL, Blue (B)								
Call	Dial							

TIME: ED Eastern Daylight; E Eastern; C Central; M Mountain For Pacific Time subtract one hour from Mountain.

RADEX is the only publication listing stations in alphabetical order for your convenience.

While these programs are correct at the time of going to press, changes are made from time to time.

MONDAY

ED-6:15 p.m., E-5:15, C-4:15, M-3:15 C — Bobby Benson—Sunny Jim WAAB WABC WCAU WDRC WEAN WFBL WGR WHEC WOKO

ED-6:45 p.m., E-5:45, C-4:45, M-3:45 C — Renfrew of the Mounted

KFAB KFH KLRA KMBC KMOX KOMA KRLD KRNT KSCJ KTUL KWKH WABC WADC WBBM WBNS WCCO WDRC WFBM WGR WHEC WIBX WICC WISN WJSV WKBN WMAS WMBG WNAC WNBH WOC WREC WSMK WSPD WWVA

B -- Lowell Thomas

CRCT KDKA WBAL WBZ WBZA WFLA WIOD WJAX WJZ WLW WMAL WOOD WRVA WSYR WTAM WXYZ

ED-7:00 p.m., E-6:00, C-5:00, M-4:00 R — Amos 'n' Andy

KYW WBEN WCAE WCSH WEAF WEEL WEBR WGY WJAR WLW WRC WTAG WTIC

ED-7:15 p.m., E-6:15, C-5:15, M-4:15 R — Uncie Ezra's Radio Station

KPRC KTBS KTHS KVOO KYW WBAP WBEN WCAE WCKY WCSH WDAF WEAF WEEI WFBR WGY WHIO WIRE WJAR WKY WMAQ WOAI WOOD WOW WRC WTAG WTAM WTIC

ED-7:30 p.m., E-6:30, C-5:30, M-4:30

C — Charioteers and Judy Starr KDB KERN KFAB KFBK KFPY KFRC KGB KHJ KMJ KMOX KOIN KOL KSL KVI KWG WABC WBBM WCAO WCAU WCCO WEAN WFBL WFBM WGR WHK WJAS WJR WJSV WKRC WNAC WOKO

B — Lum and Abner

WBZ WBZA WENR WJZ WLW WMC WSM WSYR

ED-7:45 p.m., E-6:45, C-5:45, M-4:45 C - Boake Carter

KMBC KMOX KOMA KRLD WABC WBBM WBT WCAO WCAU WCCO WDRC WEAN WFBL WGR WHAS WHK WJAS WJR WJSV WKRC WNAC

ED-8:00 p.m., E-7:00, C-6:00, M-5:00 C - Horace Heidt and Orchestra

KDB KERN KFAB KFBK KFH KFPY KFRC KGB KHJ KLRA KLZ KMBC KMJ KMOX KOIN KOL KRLD KRNT KSL KTRH KTSA KTUL KVI KWG WABC WBBM WBRC WBT WCAO WCAU WCCO WDRC WFBL WFBM WGR WGST WHAS WHK WJAS WJR WJSV WKRC WLAC WMBR WNAC WNAX WOKO WREC WWL

- Fibber McGee and Molly

KSD KYW WBEN WCAE WCKY WCSH WDAF WEAF WEEI WFBR WGY WHO WIRE WJAR WMAQ WOOD WOW WRC WTAG WTAM WTIC WWJ

ED-8:30 p.m., E-7:30, C-6:30, M-5:30 C - Pick and Pat

KFAB KMBC WABC WADC WBBM WBT WCAO WCAU WDRC WEAN WFBL WGR WGST WHEC WHK WHP WICC WJAS WJR WJSV WKRC WLBZ WMAS WNAC WOKO WORC WSPD

R -- Voice of Firestone

CFCF CRCT KFYR KPRC KSD WBEN WCAE WCSC WCSH WDAF WDAY WEAF WEBC WEEI WFAA WFBC WFBR WFLA WGY WIIO WHIO WIBA WIOD WIRE WIS WJAR WJAX WJDX WKY WMAQ WPTF WRC WMC WOAI WOW WRVA WSB WSM WSMB WSOC WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

· Melodiana; Abe Lyman

KDKA KOIL KSO KWK WBAL WBZ WBZA WCKY WFIL WGAR WHAM WJZ WLS WMAL WMT WREN WSYR WXYZ

ED-9:00 p.m., E-8:00, C-7:00, M-6:00 C - Lux Radio Theatre

CFRB CKAC KDB KERN KFAB KFBK KFPY KFRC KGB KHJ KLRA KLZ KMBC KMJ KMOX KOIN KOL KOMA KRLD KRNT KSL KTRH KTSA KTUL KVI KWG WABC WADC WBBM WBNS WBRC WBT WCAO WCAU WCCO WDAE WDBJ WDRC WEAN WFBL WFBM WGST WHAS WHEC WHK WICC WISN WJAS WJR WJSV WKBW WKRC WLAC WNAC WNAX WOKO WORC WQAM WREC WWL

R — A. & P. Gypsies

KSD KYW WBEN WCAE WCSH WEAF WEEL WGY WHO WDAF WHIO WIRE WJAR WMAQ WOW WRC WSAI WTAG WTAM WTIC wwJ

B - Sinclair Greater Minstrels

KDKA KDYL KFYR KOA KOIL KPRC KSO KSTP KTBS KTHS KVOO KWK WBAL WBZ WBZA WDAY WEBC WFAA WFLA WGAR WHAM WIBA WIOD WIS WJAX WJDX WJZ WKY WLS WLW WMAL WMC WMT WOAI WPTF WREN WRVA WSB WSM WSMB WSOC WSUN WSYR WTAR WTMJ WWNC WXYZ

ED-9:30 p.m., E-8:30, C-7:30, M-6:30 - Richard Himber and Orchestra KFYR KPRC KSD KSTP KTBS KVOO KYW WBEN WCAE WCSH WDAF WDAY WEAF WEBC WFAA WFBR WGY WHO WIBA WJAR WKY WLW WMAQ WOAI WOW WRC WTAG WTAM WTIC WTMJ wwj

ED-10:00 p.m., E-9:00, C-8:00, M-7:00 R-- Contented Program

CFCF CRCT KDYL KFI KGW KHQ KOA KOMO KPO KPRC KSD KYW WBEN WCAE WCSH WDAF WEAF WEEI WFBR WFLA WGY WHO WIOD WIS WJAR WJAX WKY WMAQ WMC WOAI WOW WPTF WRC WRVA WSB WSM WTAG WTAM WTAR WTIC WWJ WWNC

- Wayne King and Orchestra

KDB KERN KFAB KFBK KFPY KFRC KGB KHJ KLZ KMBC KFRC KGB KHJ KLZ KMBC KMJ KMOX KOIN KOL KRNT KSL KVI KWG WAAB

MONDAY (Continued)

WADC WBBM WBNS WBT WCAO WCAU WCCO WDRC WEAN WFBL WFBM WHAS WHK WIBW WJAS WJR WJSV WKBW WKRC WOKO WSPD WWL

ED-10:30 p.m., E-9:30, C-8:30, M-7:30 C — The March of Time

KDB KERN KFAB KFBK KFPY
KFRC KGB KHJ KLZ KMBC KMJ
KMOX KOIN KOL KRLD KRNT
KSL KVI KWG WABC WADC
WBBM WBT WCAO WCAU WCCO
WDAE WDBO WDRC WEAN WFBL
WFBM WGST WHAS WHEC WHK
WJAS WJR WJSV WKBW WKRC
WNAC WOKO WQAM WSPD WWL

ED-11:00 p.m., E-10:00,C-9:00,M-8:00 C — Dance Orchestra

CFRB CKAC WAAB WABC WADC WCAO WCAU WDRC WFBL WFEA WHEC WHK WIBX WJAS WKBN WKBW WLBZ WMAS WOKO WORC WPG WSBT WSPD

R — Amos 'n' Andy

KDYL KFI KGW KHQ KOA KOMO KPO KPRC KSD WBAP WDAF WHO WKY WLW WMC WOAI WOW WSB WSM WSMB WTAM WWJ

ED-11:15 p.m., E-10:15,C-9:15,M-8:15 C — Renfrew of the Mounted

KDB KERN KFBK KFPY KFRC KGB KHJ KMJ KOIN KOL KSL KVI KWG

ED-11:30 p.m., E-10:30, C-9:30, M-8:30

C — Dance Orchestra

CFRB CKAC KLRA WAAB WABC WADC WALA WBNS WBRC WBT WCAO WCAU WDAE WDBJ WDBO WDNC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WIBX WICC WJAS WJR WJSV WKBN WKBW WKRC WLAC WLAZ WMAS WMBG WMBR WNOX WOKO WORC WQAM WREC WSBT WSJS WSMK WSPD WTOC

C — Pick and Pat

KIDB KERN KFBK KFPY KFRC KFB KGKO KHJ KLRA KLZ KMJ KMOX KOIN KOL KOMA KRLD KRNT KSCJ KSL KTUL KVI KWG KWKH WACO WBRC WCCO WFBM WHAS WLAC WREC

R — Voice of Firestone

KDYL KFI KFSD KGHL KGIR KGU KGW KHQ KOA KOMO KPO KTAR

TUESDAY

ED-6:00 p.m., E-5:00, C-4:00, M-3:00 C — Patti Chapin; Songs

CFRB KERN KFBK KFH KFPY
KFRC KGB KGKO KHJ KLZ KMBC
KNOW KOH KOL KOMA KRLD
KRNT KSCJ KTRH KVI
KWG WAAB WABC WACO WALA
WBIG WBNS WBRC WCAO WDAE
WDBJ WDBO WDNC WDOD WESG
WFBL WFBM WGST WHAS WHK
WHP WIBX WJAS WJSV WKBW
WKRC WLAC WLBZ WMBD WMBR
WNOX WOC WOKO WORC WQAM
WREC WSBT WSJS WSMK WSPD

ED-6:15 p.m., E-5:15, C-4:15, M-3:15 C — News of Youth

WABC WADC WBNS WCAO WCAU

WDRC WEAN WFBL WHK WIBX WICC WJR WKBN WLBZ WNAC WOKO WORC WWVA

ED-6:45 p.m., E-5:45, C-4:45, M-3:45 B — Lowell Thomas, See Monday

C — Renfrew, See Monday

ED-7:00 p.m., E-6:00, C-5:00, M-4:00 R — Amos 'n' Andy, See Monday

B — Easy Aces

WORC

KDKA KDYL KFI KGW KHQ KOA KOIL KOMO KPO KSO KWK WBAL WBZ WBZA WCKY WENR WFIL WGAR WHAM WHIO WIRE WJZ WMAL WMT WSYR WXYZ

C — Krueger Musical Toast WABC WBIG WBT WDBJ WDNC WDRC WEAN WFEA WGST WICC WLBZ WMAS WMBG WMBR WNAC

ED-7:15 p.m., E-6:15, C-5:15, M-4:15 R — The Lamplighter

KDYL KFI KFYR KGW KHQ KOA KOMO KPO KSD KSTP KYW WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEI WFBR WGY WHO WIBA WJAR WLW WMAQ WOW WRC WTAG WTAM WTIC

ED-7:30 p.m., E-6:30, C-5:30, M-4:30 C — Kate Smith's Band

KFAB KMBC KMOX KRLD KRNT KTRH WABC WADC WBBM WBIG WBNS WBRC WBT WCAO WCAU WCCO WDAE WDRC WEAN WFBL WFBM WGR WGST WHAS WHK WJAS WJR WJSV WKBN WKRC WLBZ WMAS WMBG WMBR WNAC WOKO WORC WWL WWVA

B — Lum and Abner, See Monday

ED-7:45 p.m., E-6:45, C-5:45, M-4:45 C — Boake Carter, See Monday

ED-8:00 p.m., E-7:00, C-6:00, M-5:00 C — Hammerstein Music Hall KFAB KMOX KRNT WABC WADC WBBM WBNS WCAO WCAU WDRC

WEAN WFBL WFBM WGR WHAS WHK WJAS WJR WJSV WKRC WMAS WNAC WOKO WSPD

R — Leo Reisman and Orchestra KFYR KPRC KSD KSTP KTBS KVOO KYW WBAP WBEN WCAE WCSH WDAF WDAY WEAF WEEI WFBR WFLA WGY WHO WIBA WIOD WIS WJAR WJAX WJDX WKY WLW WMAQ WOW WPTF WRC WRVA WSOC WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

ED-8:30 p.m., E-7:30, C-6:30, M-5:30 C — Russ Morgan; Ken Murray

CFRB CRCM KFAB KFH KLRA
KMBC KMOX KOMA KRLD KRNT
KSL KTRH KTSA KTUL WABC
WADC WBBM WBNS WBRC WBT
WCAO WCAU WCCO WDAE WDBJ
WDRC WEAN WFBL WFBM WGR
WGST WHAS WHEC WHK WICC
WISN WJAS WJR WJSV WKRC
WLAC WMAS WMBD WMBG
WNAC WNAX WOKO WORC WQAM
WREC WWL

R — Wayne King and Orchestra

KFYR KPRC KSD KSTP KTBS KVOO KYW WAVE WBAP WBEN WCAE WCKY WCSH WDAF WDAY WEAF WEBC WEEI WFBR WGY WHO WHIO WIBA WIRE WJAR WJDX WKY WMAQ WMC WOAI WOW WRC WSB WSM WSMB WTAG WTAM WTIC WTMJ WWJ

B — Edgar Guest, Welcome Valley KDKA KOIL KSO KWK WBAL WBZ WBZA WFIL WGAR WHAM WJZ WLS WLW WMAL WMT WREN WSYR WXYZ

ED-9:00 p.m., E-8:00, C-7:00, M-6:00 C — Tommy Dorsey and Orchestra CFRB CKAC KFAB KFH KGKO KLRA KMBC KMOX KOMA KRLD KRNT KSCJ KTRH KTSA KTUL KWKH WABC WACO WADC WALA WBBM WBIG WBNS WBRC WBT WCAO WCAU WCCO WDAE WDBJ WDBO WDNC WDOD WDRC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WHP WIBW WIBX WISC WISN WJAS WJR WJSV WKBH WKBN WKBW WKRC WISN WJAS WNBD WMBG WMBR WMMN WNAC WNAX WNBF WNOX WOC WOKO WORC WOWO WPG WQAM WREC WSBT WSFA WSJS WSPD WTOC WUL

R — Vox Pop; Sidewalk Interviews KSD KYW WBEN WCAE WCKY WCSH WDAF WEAF WEEI WFBR WGY WIIO WHIO WIRE WJAR WMAQ WOW WRC WTAG WTAM WTIC WWJ

B - Ben Bernle and Orchestra

KDKA KDYL KFI KFSD KFYR KGW KHQ KOA KOIL KOMO KPO KPRC KSO KSTP KTAR KTBS KVOO KWK WAVE WBAL WBAP WBZ WBZA WDAY WEBC WFIL WFLA WGAR WHAM WIBA WIOD WIS WJAX WJDX WJZ WKY WLS WLW WMAL WMC WMT WOAI WPTF WREN WRVA WSB WSM WSMB WSOC WSYR WTAR WTMJ WWNC WXYZ

ED-9:30 p.m., E-8:30, C-7:30, M-6:30 C — Camel Caravan

KDB KERN KFAB KFBK KFH
KFPY KFRC KGB KGKO KHJ
KLRA KLZ KMBC KMJ KMOX
KOH KOIN KOL KOMA KRLD
KRNT KSCJ KSL KTRH KTSA
KTUL KVI KVOR KWG KWKH
WABC WACO WADC WALA WBBM
WBIG WBNS WBRC WBT WCAO
WCAU WCCO WDAE WDBJ WDBO
WDNC WDOD WDRC WEAN WFBL
WFBM WFEA WGST WHAS WHEC
WHK WHP WIBW WIBX WICC
WJAS WJR WJSV WKBN WKBW
WKRC WLAC WLBZ WMAS WMBD
WMBG WMBR WNAC WNAX
WNOX WOKO WORC WOWO WPG
WQAM WREC WSBT WSFA WSJS
WSPD WTOC WWL

ED-10:30 p.m., E-9:30, C-8:30, M-7:30 C — March of Time, See Monday

ED-11:00 p.m., E-10:00, C-9:00, M-8:00 C — Dance Orchestra

CKAC WAAB WABC WADC WCAO WCAU WDRC WFBL WFEA WHEC WHK WIBX WJAS WJSV WKBW WLBZ WMAS WOKO WORC WSBT WSPD

R — Amos 'n' Andy, See Monday

ED-11:15 p.m., E-10:15,C-9:15,M-8:15 C—Renfrew of Mounted, See Monday

ED-11:30 p.m., E-10:30,C-9:30,M-8:30 C — Dance Orchestra CFRB CKAC KLRA KSCJ WAAB

TUESDAY (Continued)

WABC WADC WALA WBBM WBNS WBRC WBT WCAU WCCO WDAE WDBJ WDBO WDNC WDOD WDRC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WIBX WICC WISN WJAS WJR WJSV WKBW WKRC WLAC WLBZ WMAS WMBD WMBG WMBR WNAX WNOX WOC WOKO WORC WQAM WREC WSBT WSJS WSMK WSPD WTOC

C — "Laugh with Ken Murray" KDB KERN KFBK KFPY KFRC KGB KHJ KLZ KMJ KOH KOIN KOL KSL KVI KVOR KWG

- Leo Reisman and Orchestra KDYL KFI KFSD KGHL KGIR KGW KHQ KOA KOMO KPO KTAR

WEDNESDAY

ED-6:15 p.m., E-5:15, C-4:15, M-3:15 C — Bobby Benson, See Monday

ED-6:45 p.m., E-5:45, C-4:45, M-3:45 C - Renfrew of Mounted, See Mon.

B - Lowell Thomas, See Monday

ED-7:00 p.m., E-6:00, C-5:00, M-4:00 R - Amos 'n' Andy, See Monday

B - Easy Aces, See Tuesday

ED-7:15 p.m., E-6:15, C-5:15, M-4:15 R — Uncle Ezra, See Monday

ED-7:30 p.m., E-6:30, C-5:30, M-4:30 B - Lum and Abner, See Monday

ED-7:45 p.m., E-6:45, C-5:45, M-4:45 C - Boake Carter, See Monday

ED-8:00 p.m., E-7:00, C-6:00, M-5:00 C - Cavalcade of America

KDB KERN KFAB KFBK KFPY KFRC KGB KHJ KLZ KMBC KMJ KMOX KOIN KOL KRLD KRNT KSL KVI KWG WABC WBBM WBNS WCAO WCAU WCCO WDRC WEAN WFBL WFBM WGR WHAS WHEC WHK WJAS WJR WJSV WKRC WLAC WMBG WNAC WOKO WTOC WWL

B - Follies de Paree

KDKA KOIL KSO KWK WBAL WBZ WBZA WCKY WFIL WGAR WHAM WHIO WIRE WJZ WLS WMAL WMT WREN WSYR WXYZ

R — One Man's Family

KDYL KFI KFYR KGW KHQ KOA KOMO KPO KPRC KSD KSTP KTAR KTBS KTHS KVOO KYW WAPI WAVE WBAP WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEI WFAA WFBR WFLA WGY WHO WIBA WIOD WIS WJAR WJAX WJDX WKY WLW WMAQ WMC WOAI WOW WPTF WRC WRVA WSB WSM WSMB WSOC WSUN WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

ED-8:30 p.m., E-7:30, C-6:30, M-5:30 C — Burns and Allen

CKAC KFAB KFH KLRA KMBC KMOX KOMA KRLD KRNT KSCJ KTRH KTSA KTUL KWKH WABC WADC WBBM WBNS WBRC WBT WCAO WCAU WCCO WDAE WDBJ WDBO WDRC WEAN WFBL WFBM WFEA WGR WGST WHAS WHEC WHK WHP WIBW WIBX WICC WJAS WJR WJSV WKRC WLAC WMBD WMAS WMBG WLBZ

WMBR WNAC WNAX WNOX WOKO WORC WPG WQAM WREC WSPD WWL

R - Wayne King, See Tuesday

B — Lavender and Old Lace

KDKA KOIL KSO KWK WBAL WBZ WBZA WFIL WGAR WHAM WLS WMAL WMT WREN WSAI WSYR WXYZ

ED-9:00 p.m., E-8:00, C-7:00, M-6:00 C — Chesterfield Program

KDB KERN KFAB KFBK KFH
KFPY KFRC KGB KGKO KGMB
KHJ KLRA KLZ KMBC KMJ
KMOX KOH KOIN KOL KOMA KRLD KRNT KSCJ KSL KTRH KTSA KTUL KVI KVOR KWG KWKH WABC WACO WADC WALA WBBM WBIG WBNS WBRC WBT WCAO WCAU WCCO WCOA WDAE WDGB WDBO WDNC WDOD WDRC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WHP WIBW WIBX WICC WISN WJAS WJR WJSV WKBH WKBW WKRC WLAC WMBD WMBG WLBZ WMAS WMBR WNAC WNAX WNBF WNOX WOC WOKO WORC WOWO WPG WQAM WREC WSFA WSJS WSPD WTOC WWL

R - Town Hall Tonight

KFYR KPRC KSD KSTP KTBS KTHS KVOO KYW WAVE WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEI WFAA WFBR WFLA WGY WHO WIBA WIOD WIS WJAR WJAX WJDX WKY WLW WMAQ WMC WOAI WOW WPTF WRC WSB WSM WSMB WSOC WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

ED-9:30 p.m., E-8:30, C-7:30, M-6:30 C — Come On, Let's Sing

KDB KERN KFAB KFBK KFH KFPY KFRC KGB KGMB KHJ KLRA KLZ KMBC KMJ KMOX KOIN KOL KOMA KRLD KRNT KSL KTRH KTSA KTUL KVI KWG KWKH WABC WBBM WBNS WBRC WBT WCAO WCAU WCCO WDAE WDBJ WDBO WDRC WEAN WFBL WFBM WGST WHAS WHEC WHK WISN WJAS WJR WJSV WICC WKBW WKRC WLAC WLBZ WMBG WMBR WNAC WOKO WORC WOWO WQAM WREC WTOC WWL

ED-10:00 p.m., E-9:00, C-8:00, M-7:00 C - Crime Crusade; Phil Lord

KDB KERN KFAB KFBK KFH KFPY KFRC KGB KHJ KLRA KLZ KMBC KMJ KMOX KOIN KOL KOMA KRLD KRNT KSL KTRH KTSA KTUL KVI KWG KWKH WABC WACO WBBM WBNS WBRC WBT WCAO WCAU WCCO WDAE WDBJ WDBO WDRC WEAN WFBL WFBM WGST WHAS WHEC WHK WICC WISN WJAS WJR WJSV WKBW WKRC WLAC WLBZ WMBG WMBR WNAC WOKO WORC WOWO WQAM WREC WTOC WWL

Red and Blue: Your Hit Parade

KDKA KDYL KECA KEX KFI KFSD KFYR KGA KGHL KGIR KGO KGU KGW KHQ KJR KLO KOA KOIL KOMO KPO KPRC KSD KSO KSTP KTAR KTBS KTHS KVOO KWK KYW WAVE WBAL WBEN WBZ WBZA WCAE WCKY WCSH WDAF WDAY WEAF WEBC

WEEI WENR WFAA WFBR WFIL WGAR WGY WHAM WHO WHIO WIBA WIOD WIRE WIS WJAR WJAX WJDX WJZ WKY WLW WMAL WMAQ WMC WMT WOAI WOW WPTF WRC WREN WRVA WSB WSM WSMB WSOC WSUN WSYR WTAG WTAM WTAR WTIC WTMJ WWJ WWNC WXYZ

ED-10:30 p.m., E-9:30, C-8:30, M-7:30 C - March of Time, See Monday

ED-11:00 p.m., E-10:00,C-9:00,M-8:00 R — Amos 'n' Andy, See Monday

ED-11:15 p.m., E-10:15, C-9:15, M-8:15 C-Renfrew of Mounted, See Monday

ED-11:30 p.m., E-10:30, C-9:30, M-8:30 C — Dance Orchestra

CKAC KLRA WAAB WABC WADO WALA WBRC WBT WCAO WCAU WDAE WDBJ WDBO WDNC WDOI WDRC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WICC WJAS WJR WJSV WKBW WKRC WLAC WLBZ WMBG WMBR WNOX WOKO WORC WQAM WREC WSPD WTOC

C — Burns and Allen KDB KERN KFBK KFPY KFRC KGB KHJ KLZ KMJ KOIN KOL KSL KVI KVOR KWG

ED-12:00p.m., E-11:00, C-10:00, M-9:00 R — Town Hall Tonight KDYL KFI KGW KHQ KOA KOMO KP0

THURSDAY

ED-6:15 p.m., E-5:15, C-4:15, M-3:15 C - News of Youth, See Tuesday

ED-6:45 p.m., E-5:45, C-4:45, M-3:45 - Renfrew of Mounted, See Mon. - Lowell Thomas, See Monday

ED-7:00 p.m., E-6:00, C-5:00, M-4:00 C — The Atlantic Family WABC WADC WBIG WBNS WBT

WCAO WCAU WDAE WDBJ WDBO WDRC WEAN WESG WFBL WGR WGST WHEC WHK WHP WIBX WICC WJAS WKBN WMAS WMBG WMBR WNAC WNBF WOKO WORC WQAM WSJS WTOC WWVA

R — Amos 'n' Andy, See Monday - Easy Aces, See Tuesday

ED-7:15 p.m., E-6:15, C-5:15, M-4:15 R - Lamplighter, See Tuesday

ED-7:30 p.m., E-6:30, C-5:30, M-4:30 C — Kate Smith, See Tuesday – Lum and Abner, See Monday

ED-7:45 p.m., E-6:45, C-5:45, M-4:45 C - Boake Carter, See Monday

ED-8:00 p.m., E-7:00, C-6:00, M-5:00 R — Rudý Vallee's Variety Hour CFCF CRCT KDYL KFI KFYR KGW KHQ KOA KOMO KPO KSD KSTP KTAR KYW WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEI WFBR WGY WHO WJAR WLW WMAQ WOW WRC WTAM WTIC WTMJ WWJ

ED-9:00 p.m., E-8:00, C-7:00, M-6:06 C — Major Bowes' Amateurs to start on Sept. 17. List of stations not now available.

R - Maxwell House Show Boat KDYL KFI KFSD KFYR KGHL

THURSDAY (Continued)

KGIR KWK KHQ KOA KOMO KPO KPRC KSD KSTP KTAR KTBS KYW WAPI WAVE WBAP WBEN WCAE WCSH WDAF WDAF WDAY WEAF WHO WHO WIBA WIOD WIRE WIS WJAR WJAX WJDX WKY WMAQ WMC WOAI WOW WPTF WRC WRVA WSAI WSB WSM WSMB WSOC WTAG WTAM WTAR WTIC WTMJ WWJ WWJ WWJ WWJ WWJ WWJ WWJ WWJ WWY WY WSOC WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

B - Death Valley Days

KDKA KOIL KSO KWK WBAL WBZ WBZA WFIL WGAR WHAM WJZ WLS WLW WMAL WMT WREN WSYR WXYZ

ED-10:00 p.m., E-9:00, C-8:00, M-7:00 R — Bing Crosby; Jimmy Dorsey CFCF CRCT KDYL KFI KFYR KGW KHQ KOA KOMO KPO KPRC KSD KSTP KTAR KTBS KTHS KVOO KYW WAVE WBAP WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEL WFBR WFLA WGY WHO WIBA WIOD WIS WJAR WJAX WJDX WKY WLW WMAQ WMC WOAI WOW WPTF WRC WRVA WSB WSM WSMB WSOC WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

ED-10:30 p.m., E-9:30, C-8:30, M-7:30 C — March of Time. See Monday &

ED-11:00 p.m., E-10:00,C-9:00,M-8:00 C — Dance Orchestra

WAAB WABC WADC WCAO WCAU WFBL WHK WHSX WJSV WKBN WKBW WLBZ WMAS WOKO WORC WPG WSBT WSPD

R --- Amos 'n' Andy, See Monday

ED-11:15 p.m., E-10:15,C-9:15,M-8:15 C—Renfrew of Mounted, See Monday

ED-11:30 p.m., E-10:30,C-9:30,M-8:30 C — Dance Orchestra

CFRB CKAC KLRA WAAB WABC WADC WALA WBNS WBRC WBT WCAO WCAU WDAE WDBJ WDBO WDNC WDOD WDRC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WHEN WHC WJAS WJR WJSV WKBN WKBW WKRC WLAC WLBZ WMAS WMBG WMBR WNOX WOKO WORC WQAM WREC WSBT WSJS WSMK WSPD WTOC

FRIDAY

ED-6:15 p.m., E-5:15, C-4:15, M-3:15 C — Bobby Benson, See Monday

ED-6:45 p.m., E-5:45, C-4:45, M-3:45 C — Renfrew of Mounted, See Tues. B — Lowell Thomas, See Monday

ED-7:00 p.m., E-6:00, C-5:00, M-4:00 R — Amos 'n' Andy, See Monday

ED-7:15 p.m., E-6:15, C-5:15, M-4:15 R — Uncle Ezra, See Monday

ED-7:30 p.m., E-6:30, C-5:30, M-4:30 B — Lum and Abner, See Monday

ED-7:45 p.m., E-6:45, C-5:45, M-4:45 C — Boake Carter, See Monday

ED-8:00 p.m., E-7:00, C-6:00, M-5:00 C— Flying Red Horse Tavern KFAB KFH KMBC KMOX KRNT WARC WADC WRRM WNS WCAO WCAU WCCO WDRC WEAN WFBL WFBM WGR WHAS WHEC WHK WIBW WICC WJAS WJR WJSV WKRC WLBZ WMAS WMBD WNAC WOC WOKO WORC WSPD

R — Cities Service Concert

CRCT, KFYR KOA KPRC KSD KSTP KTBS KTHS KVOO KYW WBAP WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEI WFAA WFBR WGY WHO WHIO WIBA WIOD WJAR WKY WMAQ WOAI WOW WRC WRVA WSAI WTAG WTAM WTIC WTMJ WWJ

B — Irene Rich; Drama

KDKA KDYL KFI KGW KHQ KOIL KOMO KPO KSO KTAR KWK WAVE WBAL WBZ WBZA WCKY WFIL WGAR WHAM WIRE WJZ WLS WMAL WMC WMT WREN WSB WSM WSYR WXYZ

ED-8:30 p.m., E-7:30, C-6:30, M-5:30 C — Broadway Varieties

KDB KERN KFAB KFBK KFPY KFRC KGB KIIJ KLZ KMBC KMJ KMOX KOIN KOL KOMA KRNT KSL KVI KWG WABC WADC WBBM WBNS WBRC WBT WCAO WCAU WCCO WDRC WEAN WFBL WFBM WGR WGST WIIAS WIK WJAS WJR WJSV WKRC WMAS WMBG WNAC WOKO WSPD WWL

B — Frank Fay Calling

KDKA KDYL KFI KGW KHQ KOIL KOMO KPO KSO KWK WBAL WBZ WBZA WFIL WGAR WHAM WJZ WLS WLW WMAL WMT WREN WSYR WXYZ

ED-9:00 p.m., E-8:00, C-7:00, M-6:00 C — Hollywood Hotel

CFRB CKAC KDB KERN KFAB
KFBK KFII KFPY KFRC KGB KIJ
KLRA KLZ KMBC KMJ KMOX
KOIN KOL KOMA KRLD KRNT
KSCJ KSL KTRH KTSA KTUL KVI
KVOR KWG KWKH WABC WADC
WBBM WBNS WBRC WBT WCAO
WCAU WCCO WDAE WDBJ WDBO
WDRC WEAN WFBL WFBM WFEA
WGST WHAS WHEC WHK WHP
WIBW WHEX WICC WJAS WJR
WJSV WKBW WKRC WLAC WLBZ
WMAS WMBD WMBG WMBR
WNAC WNAX WNOX WOKO WORC
WPG WQAM WREC WSPD WWL

R — Frank Munn; Bernice Claire KSD KYW WBEN WCAE WCSH WDAF WEAF WEEI WFBR WGY WJAR WLW WMAQ WOW WRC WTAG WTAM WWJ

B-B. A. Rolfe; Richard Bonelli
KDKA KDYL KFYR KOA KOIL
KPRC KSO KSTP KTBS KWK
WAPI WAVE WBAL WBZ WBZA
WDAY WEBC WFAA WFIL WFLA
WGAR WHAM WIBA WIOD WIS
WJAX WJDX WJZ WKY WLS WLW
WMAL WMC WMT WOAI WOOD
WPTF WREN WRVA WSB WSM
WSMB WSOC WSUN WSYR WTAR
WTMJ WWNC WXYZ

ED-9:30 p.m., E-8:30, C-7:30, M-6:30 R — True Story Court

KSD KYW WBEN WCAE WCSH WEAF WEEI WFBR WGY WHO WHIO WJAR WMAQ WOW WRC WTAG WTAM WTIC WWJ

KFAB KFH KMBC KMOX KRNT **B — Clara, Lu 'n' Em** WOKO-WORC WQAM WABC WADC WBBM WBNS WCAO KDKA KDYL KECA KEX KFI WSMK WSPD WTOC

KFSD KFYR KGA KGHL KGIR KGO KGW KHQ KJR KOA KOIL KOMO KPO KPRC KSO KSTP KTAR KTBS KWK WAPI WAVE WBAL WBZ WBZA WDAY WEBC WENR WFAA WFBR WFIL WFLA WGAR WHAM WHIO WIBA WIOD WIRE WIS WJAX WJDX WJZ WKY WLW WMAL WMC WMT WOOD WPTF WREN WRVA WSB WSM WSMB WSOC WSUN WSYR WTAR WTMJ WWNC WXYZ

ED-10:00 p.m., E-9:00, C-8:00, M-7:00 C — Andre Kostelanetz

KDB KERN KFAB KFBK KFH
KFPY KFRC KGB KGKO KGMB
KHJ KLRA KLZ KMBC KMJ KMOX
KOH KOIN KOL KOMA KRLD
KRNT KSCJ KSL KTRH KTSA
KTUL KVI KVOR KWG KWKH
WABC WACO WADC WALA WBBM
WBIG WBNS WBRC WBT WCAO
WCAU WCCO WCOA WDAE WDBJ
WDBO WDNC WDOD WDRC WEAN
WFBL WFBM WFEA WGST WHAS
WHEC WIK WHP WIBW WIBX
WICC WISN WJAS WJR WJSV
WKBW WKRC WLAC WLBZ WMAS
WMBD WMBG WMBR WNAC
WNAX WNBF WNOX WOC WOKO
WORC WOWO WPG WQAM WREC
WSFA WSJS WSMK WSPD WTOC

R — Marion Tailey and Orchestra KDYL KFI KFYR KGW KHQ KOA KOMO KPO KSD KSTP KYW WBEN WCAE WCKY WCSH WDAF WDAY WEAF WEBC WEEI WFBR WGY WHIO WIBA WIRE WJAR WMAQ WOW WRC WTAG WTAM WTIC

ED-10:30 p.m., E-9:30, C-8:30, M-7:30 C — March of Time, See Monday

WTMJ WWJ

ED-11:00 p.m., E-10:00,C-9:00,M-8:00 R — Amos 'n' Andy, See Monday

ED-11:15 p.m., E-10:15,C-9:15,M-8:15 C — Dance Orchestra

CFRB CKAC KLRA KSCJ WAAB WABC WADC WALA WBNS WBRC WBT WCAO WCAU WDAE WDBJ WDBO WDNC WFBL WFEA WGST WHEC WHK WIBX WISN WJAS WJR WKBW WLAC WLBZ WMAS WMBD WMBG WMBR WNAX WNOX WOC WOKO WORC WPG WQAM WREC WSBT WSJS WSMK WSPD WTOC

C - Renfrew of Mounted, See Mon.

ED-12:00p.m.,E-11:00,C-10:00,M-9:00 B — B. A. Rolfe; Richard Boneill KDYL KFI KFSD KGHL, KGIR KGW KHQ KOA KOMO KPO KTAR

SATURDAY

ED-6:15 p.m., E-5:15, C-4:15, M-3:15 C — News of Youth, See Tuesday

ED-6:45 p.m., E-5:45, C-4:45, M-3:45 C — Al Roth and Orchestra CKAC KERN KFBK KFH KFPY

CKAC KERN KFBK KFH KFPY KFRC KGB KGKO KMBC KMOX KOH KOL KOMA KRNT KTRII KVOR KWG WAAB WADC WALA WCAO WDAE WDBO WDNC WSG WFEA WGST WHAS WHEC WHP WIBX WJAS WJSV WKBW WLAC WLBZ WMBD WMBG WMBR WOC WOKO WORC WQAM WREC WSJS WSMK WSPD WTOC

SATURDAY (Continued)

ED-7:00 p.m., E-6:00, C-5:00, M-4:00 - Patti Chapln, Songs

CKAC KERN KFH KFPY KFRC KGKO KHJ KLZ KGB KMBC KMOX KOL KOMA KRLD KRNT KSCJ KTRH KVI KVOR KWG WABC WACO WALA WBBM WBIG WBT WCAO WCCO WDAE WDBO WDRC WEAN WESG WFBL WFEA WGR WGST WHAS WHK WHP WIBW WIBX WICC WJAS WKRC WLAC WLBZ WMBG WMBR WNAC WNOX WOC WOKO WORC WQAM WREC WSJS WSMK WSPD WTOC

ED-8:00 p.m., E-7:00, C-6:00, M-5:00

C — Saturday Swing Session
CFRB CKAC KFAB KFH KFRC KLRA KMBC KMOX KOMA KRNT KTRH KTSA KTUL KWKH WABC WBBM WBNS WBRC WBT WCAO WCAU WCCO WDAE WDBJ WDBO WDRC WEAN WFBL WFBM WGR WGST WHAS WHEC WHK WHP WICC WISN WJAS WJR WJSV WKRC WLAC WLBZ WMBG WMBR WNAC WOKO WORC WQAM WREC WTOC WWL

ED-8:30 p.m., E-7:30, C-6:30, M-5:30 C — Columbia Workshop; Drama CFRB CKAC KFAB KFH KFRC

KLRA KMBC KMOX KOMA KRNT KTRH KTSA KTUL KWKH WABC WBBM WBNS WBRC WBT WCAO WCAU WCCO WDAE WDBJ WDBO WDRC WEAN WFBL WFBM WGR WGST WHAS WHEC WHK WHP WISN WJAS WJR WJSV WICC WKRC WLAC WLBZ WMBG WMBR WNAC WOKO WORC WQAM WREC WTOC WWL

ED-9:30 p.m., E-8:30, C-7:30, M-6:30 R — Shell Chateau

KDYL KFI KFSD KFYR KGHL KGIR KGW KHQ KOA KOMO KPO WEST KTOR KYW WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEI WFBR WGY WIBA WJAR WLW WMAQ WOW WRC WTAG WTAM WTIC WTMJ WWJ

- National Barn Dance

KDKA KOIL KPRC KSO KTBS KTHS KWK WAPI WAVE WBAL WBAP WBZ WBZA WCSC WFBC WFBR WFIL WFLA WGAR WHAM WHIO WIOD WIRE WIS WJAX WJDX WJZ WKY WLS WMAL WMC WMT WOAI WOOD WPTF WREN WRVA WSB WSMB WSOC WSUN WSYR WTAR WWNC WXYZ

ED-10:00 p.m., E-9:00, C-8:00, M-7:00 - Your Hit Parade

KERN KFAB KFBK KFH KFPY KFRC KGB KGKO KGMB KHJ KLRA KLZ KMBC KMJ KMOX KOH KOIN KOL KOMA KRLD KRNT KSCJ KSL KTRH KTSA KTUL KVI KVOR KWG KWKH WABC WACO WADC WALA WBBM WBIG WBNS WBRC WBT WCAO WCAU WCCO WCOA WDAE WDBJ WDBO WDNC WDOD WDRC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WHP WIBW WIBX WICC WISN WJAS WJR WJSV WKBW WKRC WLAC WLBZ WMAS WMBD WMBG WMBR WNAC WNAX WNOX WOC WOKO WORC

WPG WQAM WREC WSBT WSFA WSJS WSPD WTOC WWL WWVA

ED-10:30 p.m., E-9:30, C-8:30, M-7:30 R — George Olsen; Ethel Shutta KDYL KFI KFYR KGW KHQ KOA KOMO KPO KSD KSTP KYW WAVE WBEN WCAE WCKY WCSH WDAF WDAY WEAF WMBC WEEI WFBR WGY WHIO WIBA WIRE WJAR WJDX WMAQ WMC WOW WRC WSB WSMB WTAG WTAM WTIC WTMJ WWJ

ED-11:00 p.m., E-10:00,C-9:00,M-8:00 C — Dance Orchestra

CFRB CKAC KFH KGKO KLRA KLZ KMBC KMOX KOMA KRLD KSCJ KSL KTRH KTSA KWKH WABC WACO WADC WALA WBBM WBNS WBRC WBT WACO WCAU WCCO WDAE WDBJ WDBO WDNC WDOD WDRC WFBL WFBM WFEA WGST WHAS WHEC WHK WIBW WIBX WICC WISN WJAS WJR WJSV WKBW WKRC WLAC WLRZ WMAS WMBD WMBG WMBR WNAX WNOX WOC WOKO WORC WQAM WREC WSHT WSJS WSMK WSPD WTOC

- National Barn Dance KDYL KFI KFSD KFYR KGHL KGIR KGU KGW KHQ KOA KOMO KPO KSTP KTAR WDAY WIBA WLW WTMJ

ED-11:30 p.m., E-10:30,C-9:30,M-8:30 - Dance Orchestra

CFRB CKAC KFH KGKO KLRA KLZ KMBC KMOX KOMA KSL KTRH KTSA KVOR KWKH WABC WACO WADC WALA WBNS WBRC WBT WCAO WCAU WDAE WDBJ WDBO WDNC WDOD WDRC WEAN WFBL WFBM WFEA WGST WHAS WHEC WHK WIBW WIBX WICC WJAS WJR WKBW WKRC WLAC WLBZ WMAS WMBG WMBR WNOX WOKO WORC WQAM WREC WSBT WSJS WSMK WSPD WTOC

SUNDAY

ED-11:30 a.m., E-10:30, C-9:30, M-8:30 C — Sait Lake Tabernacie Choir KFH KGKO KLRA KLZ KMBC KOMA KRLD KSCJ KSL KTRH KTSA KWKH WACO WADC WALA WBIG WBNS WBRC WBT WCCO WDBO WDNC WDOD WDRC WFBL WFBM WFEA WGST WHAS WIBW WIBX WISN WJAS WJR WJSV WKBN WKRC WLAC WLBZ WMAS WMBR WNAC WMBD WNAX WNOX WOKO WORC WQAM WREC WSBT WSMK WSPD WTOC

R — Major Bowes' Capitol Family CFCF CRCT KDYL KFI KFYR KGW KHQ KOA KOMO KPO KPRC KSD KSTP KTBS KTHS KVOO KYW WAPI WAVE WBAP WBEN WCAE WCSC WCSH WDAF WDAY WEAF WEBC WEEI WFAA WFBC WFBR WFLA WGY WHO WIBA WIOD WIS WJAR WJAX WJDX WKY WMAQ WMC WOAI WOW WPTF WRC WRVA WSB WSM WSMB WOSC WSUN WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

ED-12:30 p.m., E-11:30, C-10:30, M-9:30

- Radio City Music Hall CFCF CRCT KDKA KDYL KFI KFYR KGO KGW KHQ KOIL KOMO KPRC KSO KVOO WAPI WBAL WBZ WBZA WCKY WDAY WEBC WGAR WHAM WIS WJDX WJZ WKY WMAL WOAI WREN WSMB WSYR WWNC

ED-12:45 p.m., E-11:45, C-10:45, M-9:45

Trans-Atlantic Broadcast

CFRB CKAC KFH KGKO KLRA
KLZ KMBC KRLD KSCJ KTRH
KTSA KVOR WABC WACO WADC
WALA WBIG WBRC WCAO WCAU
WCCO WDAE WDBJ WDBO WDRC WEAN WESG WFBL WFBM WFEA WGR WHAS WIBX WJAS WJSV WKBN WLAC WLBZ WMBD WMBR WNAC WOC WOKO WORC WPG WQAM WREC WSJS WSMK WSPD WTOC WWL

ED-1:00p.m., E-12:00, C-11:00, M-10:00 C — Church of the Air

KFBK KFH KFPY KFRC KGB KHJ KMOX KOH KOL KOMA KRLD KRNT KSCJ KSL KTRH KTSA KVI KVOR KWG WABC WALA WBNS WBT WCAO WCCO WDAE WDBJ WDBO WDRC WESG WFBL WFBM WGR WHAS WHP WIBX WJAS WJSV WKBN WKRC WLAC WLBZ WMBR WNBF WOC WOKO WORC WPG WQAM WREC WSBT WSJS WSPD WTOC WWVA

ED-2:00 p.m., E-1:00, C-12:00, M-11:00 B — Magic Key of RCA

CFCF CRCT KDKA KDYL KFI KFYR KGU KGW KHQ KOA KOIL KOMO KPO KPRC KSO KSTP KTBS KTHS KVOO KWK WAPI WAVE WBAL WBZ WBZA WCKY WDAY WEBC WENR WFAA WFIL WFLA WGAR WHAM WHIO WIBA WIOD WIRE WIS WJAX WJDX WJZ WKY WMAL WMC WMT WOAI WPTF WREN WRVA WSB WSM WSMB WSOC WSYR WTAR WTMJ WWNC WXYZ

ED-3:00 p.m., E-2:00, C-1:00, M-12:00 - Everybody's Music

CFRB CKAC KERN KFH KFPY KFRC KGB KGKO KHJ KLZ KMBC KMOX KOH KOL KOMA KRNT KSCJ KSL KTRH KTSA KVI KVOR KWG WAAB WABC WALA WBIG WBNS WBRC WBT WCAO WCCO WDAE WDBJ WDRC WEAN WESG WFBL WFBM WFEA WGST WHAS WHK WHP WIBW WIBX WICC WJAS WKBN WKBW WKRC WLAC WMBD WMBG WMBR WNBF WNOX WOC WOKO WORC WPG WQAM WREC WSBT WSJS WSMK WSPD WTOC

ED-4:00 p.m., E-3:00, C-2:00, M-1:00 Rev. Charles E. Coughlin KFEL KNX KSFO KSTP KVOD KWK WATR WCAO WCAU WDRC WEAN WFBL WFEA WGAR WGR WHB WHO WICC WISN WJAS WJJD WJR WLBZ WLLH WLW WMAS WNAC WNBH WOKO WOL WOR WORC WOW WRDO

ED-5:00 p.m., E-4:00, C-3:00, M-2:00 C — Ann Leaf's Musicale

CFRB CKAC KERN KFAB KFBK KFPY KFRC KGB KGKO KHJ KLZ KMBC KMOX KOH KOL KOMA KRNT KSL KTRH KTSA KVI KVOR WABC WACO WADC WALA WBIG WBNS WBRC WBT

SUNDAY (Continued)

WCAO WCAU WCCO WDAE WDBJ WDBO WDOD WDRC WEAN WFBL WFBM WGST WHAS WHEC WHK WHP WIBW WJAS WJR WJSV WKBW WKRC WLAC WMBD WNAC WMBG WMBR WNOX WOKO WPG WQAM WREC WSJS WSMK WSPD WTOC

ED-5:30 p.m., E-4:30, C-3:30, M-2:30 C — Tea Time Tunes KFH KMBC KMOX KOMA KTUL WAAB WABC WBNS WCAO WCAU WDRC WEAN WFBL WFBM WGR WHAS WHEC WHK WIBX WICC

WJR WJSV WMAS WOKO WORC WSPD WWL WWVA

ED-7:00 p.m., E-6:00, C-5:00, M-4:00 B — Tim Ryan; Irene Noblette

CFCF CRCT KDKA KFYR KOIL KPRC KSO KSTP KTBS KVOO KWK WAVE WBAL WBZ WBZA WDAY WEBC WENR WFAA WFIL WFLA WGAR WHAM WIBA WIOD WIS WJAX WJDX WJZ WKY WLW WMAL WMC WMT WOAI WPTF WREN WRVA WSB WSM WSMB WSOC WSYR WTAR WTMJ WWNC WXYZ

ED-7:30 p.m., E-6:30, C-5:30, M-4:30 C—Crumit; Sanderson

KLRA KLZ KRLD KTRH KTSA
KTUL KWKH WABC WACO WADC
WALA WBIG WBNS WBRC WBT
WCAO WCAU WCOA WDAE WDBJ
WDBO WDNC WDOD WDRC WEAN
WFBL WFBM WFEA WGR WGST
WHAS WHEC WHK WHP WIBX
WICO WJAS WJR WJSV WKBN
WKRO WLAC WLBZ WMAS WMBG
WMBR WNAC WNOX WOKO WORC
WQAM WREC WSBT WSFA WSJS
WSMK WSPD WTOC WWL WWVA

R — Fireside Recitais

KSD KYW WBEN WCAE WCSH WDAF WEAF WFBR WGY WHIO WIRE WJAR WMAQ WOW WRC WSAI WTAG WTAM WTIC WWJ

B — Husbands and Wives

KDKA KOIL KPRC KSO KTBS

KTHS KVOO KWK WAPI WAVE WBAL WBAP WBZ WBZA WCKY WFIL WGAR WHAM WHIO WIRE WJDX WJZ WKY WLS WMAL WMC WMT WOAI WREN WSB WSM WSMB WSYR WXYZ

ED-7:45 p.m., E-6:45, C-5:45, M-4:45 R — Sunset Dreams; Morin Sisters CFCF CRCT KSD KYW WBEN WCAE WCSH WDAF WEAF WFBR WGY WHO WHIO WIRE WJAR WLW WMAQ WOAI WOOD WOW WRC WTAG WTAM WTIC WWJ

ED-8:00 p.m., E-7:00, C-6:00, M-5:00 C — America Dances; Lud Gluskin KFAB KFH KFPY KLRA KLZ KMBC KMOX KOMA KRLD KRNT KTRH KTSA KTUL KWG KWKH WABC WADO WALA WBBM WBNS WBRC WBT WCAO WCAU WCCO WDOD WDC WEAN WFBL WFBM WGR WGST WHAS WHEC WHK WHP WICC WJAS WJR WJSV WKRC WLAC WNAC WNAX WOC WOKO WOWO WREC WSPD WWL

C—Beginning Sept. 27: Joseph Pasternak and Nelson Eddy

R — Major Bowes' Amateur Hour CFCF CRCT KDYL KFI KFYR KGW KHQ KOA KOMO KPO KPRC KSD KSTP KTAR KVOO KYW WAVE WBEN WBZ WBZA WCAE WCSH WDAF WDAY WEAF WEBC WFAA WFBR WFLA WGY WHO WIOD WIS WJAR WJAX WJDX WKY WLW WMAQ WMC WOAI WOW WPTF WRC WRVA WSB WSM WSMB WTAG WTAM WTAR WTIC WTMJ WWJ WWNC

ED-9:00 p.m., E-8:00, C-7:00, M-6:00 R—Manhattan Merry-Go-Round CFCF KDYL KFI KFYR KGW KHQ KOA KOMO KPO KPRC KSD KSTP KTBS KTHS KYW WAVE WBEN WCAE WCKY WCSH WDAF WDAY WEAF WEBC WEEI WFAA WFBR WFLA WGY WHO WHIO WIBA WIOD WIRE WIS WJAR WJAX WJDX WKY WMAQ WMC WOAI WOW WPTF WRC WRVA WSB WSM WSMB WSOC WTAG

WTAM WTAR WTIC WTMJ WWJ WWNC

B — Cornella Otis Skinner
KDKA KECA KEX KFSD KGA
KGHL KGIR KGO KJR KLO KOIL
KSO KTAR KWK WBAL WBZ WBZA
WENR WFIL WGAR WHAM WJZ
WLW WMAL WMT WREN WSYR
WXYZ

ED-9:30 p.m., E-8:30, C-7:30, M-6:30 R — Album of Familiar Music

CFCF CRCT KDYL KFI KFYR KGW KHQ KOA KOMO KPO KPRC KSD KSTP KTBS KYW WAPI WAVE WBEN WCAE WCSH WDAF WDAY WEAF WEBC WEEI WFAA WFBR WFLA WGY WHO WHIO WIBA WIOD WIS WJAR WJAX WJDX WKY WMAQ WMC WOAI WOW WPTF WRC WRVA WSAI WSB WSM WSM WSM WSM WSM WSM WSM WSM WSM WYAK WTAY WWNC WTAG WTAM WTAR WTMJ WWJ WWNC

ED-9:45 p.m., E-8:45, C-7:45, M-6:45 B-Paul Whiteman's Musical Varieties KDKA KOIL KSO KWK WBAL WBZ WBZA WENR WFIL WGAR WHAM WJZ WMAL WMT WREN WSAI WSYR WXYZ

ED-11:00 p.m.,E-10:00,C-9:00,M-8:00 R—Sunset Dreams; Morin Sisters KDYL KFI KFSD KGW KHQ KOA KOMO KPO KPRC KTAR KTBS KTHS WBAP WDAF WKY

ED-11:15 p.m.,E-10:15, C-9:15,M-8:15 B—Cornella Otis Skinner KDYL KFI KFSD KGHL KGIR

KGW KHQ KOA KOMO KPO KPRC KTAR KTBS KTHS WAPI WAVE WBAP WJDX WKY WMC WOAI WSB WSM WSMB

ED-11:30 p.m., E-10:30,C-9:30,M-8:30 B — Tim Ryan; Irene Noblette KDYL KFI KFSD KGHL KGIR

KDYL KFI KFSD KGHL KGIR KGU KGW KHQ KOA KOMO KPO KTAR

B-Paul Whiteman's Musical Varieties KECA KEX KFSD KGA KGO KJR KPRC KTBS KTHS WAPI WAVE WBAP WJDX WKY WMC WOAI WSB WSM WSMB

CLASSIFIED INDEX TO CHAIN PROGRAMS

Time in Eastern Daylight Saving

C-Columbia; R-National (Red); B-National (Blue)

CONCERTS

Everybody's Music, 3 p.m. Sunday, C Ford Program, 9 p.m. Fri., B Radio City Music Hall, 12:30 p.m. Sun., B

DANCE BANDS

Victor Arden, 8:30 p.m. Fri., C Bunny Berigan, 8 p.m. Sat., C Ben Bernie, 9:00 p.m. Tues., B Ray Block, 7 p.m. Tues. and Thurs., C Jimmie Dorsey, 10 p.m. Thurs., R Eddie Duchin, 8:30 p.m. Wed., C Ted Flo Rito, 9:30 p.m. Fri., B Lud Gluskin, 8 p.m. Sun., C Benny Goodman, 9:30 p.m. Tues., C Louis Gress, 7 p.m. Sun., C
Horace Heldt, 8 p.m. Mon., C
Richard Himber, 9:30 p.m. Mon., R
Hal Kemp, 7:30 p.m. Sun., C
Wayne King, 8:30 p.m. Tues. and Wed., R. 10 p.m.
Mon., C
Andre Kostelanetz, 9 p.m. Wed., C and 10 p.m. Fri., C
Benny Krueger, 8:30 and 11:30 p.m., Mon., C
Abe Lyman, 5 p.m. Sun., C, and 8:30 p.m. Mon., B
Russ Morgan, 8:30 p.m. Tues., C
Raymond Paige, 9 p.m. Fri., C
Leo Reisman, 8 and 11:30 p.m. Tues., R
Freddie Rich, 10 p.m. Sat., C
Al Roth, 6:45 Sat., C
Jack Shilkret, 5:30 p.m. Sun., C
Nathaniel Shilkret, 9:30 p.m., Tues., C

Phil Spitalny, 6 p.m. Sun., C Rudy Vallee, 8 p.m. Thurs., R Peter Van Steeden, 9 p.m. Wed., R Paul Whiteman, 9:45 and 11:30 p.m. Sun., B Victor Young, 9:30 p.m. Sat., R

DIALOG

Amos 'n' Andy, 7 and 11 p.m. dally except Sat. and Sun., R
Fred Astaire, 9:30 p.m. Tues., R
Phil Baker, 7:30 p.m. Sun., C
Burns and Allen, 8:30 and 11:30 p.m. Wed., C
Clara, Lu 'n' Em, 9:30 p.m. Fri., B
Easy Aces, 7 p.m. Tues., Wed., Thurs., B
Frank Fay, 8:30 p.m. Fri., B
Fibber McGee and Molly, 8 p.m. Mon., R
Pum and Abner, 7:30 p.m. dally except Sat. and Sun., B
Ken Murray, 8:30 p.m. and 11:30 p.m. Tues., C
Plck and Pat, 8:30 and 11:30 p.m. Mon., C
Stoopnagle and Budd, 9 p.m. Wed., R

DRAMA

Columbia Workshop, 8:30 p.m. Sat.; C
Crime Crusade, 10 p.m. Wed., C
Death Valley Days, 9 p.m. Thurs., B
Phillips Lord, 10 p.m. Wed., C
Lux Radio Theater, 9 p.m. Mon., C
News of Youth, 6:15 p.m. Tues., Thurs., Sat., C
One Man's Family, 8 p.m. Wed., R
Renfrew of the Mounted, 6:45 and 11:15 p.m. Mon.
thru Frl., C
Irene Rich, 8 p.m. Frl., B
True Story Court, 9:30 p.m. Frl., R
Welcome Valley, 8:30 p.m. Tues., B

POPULAR PROGRAMS

A. & P. Gypsies, 9 p.m. Mon., R Album of Familiar Music, 9:30 p.m. Sun., R Atlantic Family, 7 p.m. Thurs., C Major Bowes, 11:30 a.m. and 8 p.m. Sun., R Broadway Varieties, 8:30 p.m. Fri., C Camel Program, 9:30 and 11:30 p.m. Tues., Thurs., C Cavalcade of America in Music, 8 p.m. Wed., C Chesterfield Program, 9 p.m. Wcd., C Cities Service Concert, 8 p.m. Fri., R Contented Program, 10 p.m. Mon., R Come On, Let's Sing, 9:30 p.m. Wed., C Fireside Recitals, 7:30 p.m. Sun., R Fleischmann Varlety Hour, 8 p.m. Thurs., R Flying Red Horse Tavern, 8 p.m. Fri., C Hammerstein's Music Hall, 8 p.m. Tues., C Hit Parade, 10 p.m. Red and Blue Wednesday; 10 p.m. Sat., C Hollywood Hotel, 9 p.m. Fri., C Krueger Musical, 7 p.m. Tues., C Magic Key of RCA, 2 p.m. Sun., B Manhattan Merry-Go-Round, 9 p.m. Sun., R March of Time, 10:30 p.m. Mon. thru Fri., C Maxwell House Show Boat, 9 p.m. Thurs., R Musical Footnotes, 1:30 p.m. Sun., C National Barn Dance, 9:30 and 11:30 p.m. Sat., B Shell Chateau, 9:30 p.m. Sat., R Sinclair Minstrels, 9 p.m. Mon., B Swing Session, 8 p.m. Sat., C Town Hall Tonight, 9 and 12 p.m. Wed., R Uncle Ezra, 7:15 p.m. Mon., Wed., Fri., R Voice of Firestone, 8:30 and 11:30 p.m. Mon., R Vox Pop, 9 p.m. Tues., R Welcome Valley, 8:30 p.m. Tues., B SINGERS

SINGERS
Fred Astaire, 9:30 p.m. Tues., R
Smith Ballew, 9:30 p.m. Sat., R
Richard Bonelli, 9 p.m. Fri., B
Patti Chapin, 7 p.m. Sat., C and 6 p.m. Tues., C
Charlotteers, 7:15 p.m. Mon., C
Bernice Claire, 5 p.m. Sun., C., and 9 p.m. Fri., R
Jerry Cooper, 7 p.m. Tues., C
Bing Crosby, 10 p.m. Thurs., R
Crumit-Sanderson, 7:30 p.m. Sun., C
Jessica Dragonette, 8 p.m. Fri., R
Phil Duey, 8 and 11:30 p.m. Tues., R

Alexander Gray, 8 p.m. Thurs., C Frances Langford, 9 p.m. Fri., C Elizabeth Lennox, 8:30 p.m. Fri., C Lucy Monroe, 9:30 p.m. Sun., R Morin Sisters, 7:45 and 11 p.m. Sun.; R Frank Munn, 9:30 p.m. Sun. and 9 p.m. Frl., R Frank Parker, 7 p.m. Sat., C Carmella Ponselle, 8:30 p.m. Fri., C Dick Powell, 9 p.m. Fri., C Homer Rodeheaver, 9:30 p.m. Wed.; C Lanny Ross, 9 p.m. Thurs., R Oscar Shaw, 8:30 p.m. Fri., C Sally Singer, 7 p.m. Mon., Thurs., C Kate Smith, 7:30 Tues. and 8 p.m. Thurs., C Oliver Smith, 5 p.m. Sun., C Margaret Speaks, 8:30 p.m. Mon., R Marion Talley, 10 p.m. Fri., R Judy Starr, 7:30 p.m. Mon., C

TALKS

Boake Carter, 7:45 p.m. Mon. thru Frl., C Rev. Charles E. Coughlin, 4 p.m. Sunday Husbands and Wives, 7:30 p.m. Sun., B Sidewalk Interviews, 9 p.m. Tues., R Lowell Thomas, 6:45 p.m. Mon., thru Frl., B Trans-Atlantic Broadcast, 12:45 p.m. Sun., C

THE MONTH'S CHANGES IN STATION DATA

NEW

		LA E. AA
640	WSPG	Portland, Me.
830	CMJX	Camaguey, Cuba
1040	KYOS	Merced, Calif.
1160	XEP	Juarez, Chih.
1200	KDNC	Lewistown, Mont.
	KVEC	San Luis Obispo, Calif
	WOLS	Florence, S. C.
1210	KGLO	Mason City, Iowa
	KOCA	Kilgore, Texas
	WBLY	Lima, Ohio
	WLMU	Middlesboro, Ky.
1310	KROY	Sacramento, Calif.
	KRRV	Sherman, Texas
	KWAT	Watsonville, Calif.
1340	CMAB	Pinar del Rio, Cuba
1370	KBHB	Rapid City, S. Dak.
	KTEM	Temple, Texas
	WDWS	Champaign, Ill.
	WEXP	Clarksburg, W. Va.
1420	WAPO	Chattanooga, Tenn.
1500	KUTA	Salt Lake City, Utah
		Valley City, N. Dak.
		FREQUENCY
580	WILL	Urbana, Ill., from 890
1400	KHBC	Hilo, T. H., from 1420
1300	MIIDO	1110, 1.11., 11011 1420
		DOWED

POWER

630	CJRC	Winnipeg, Man., 1000 from 500
710	KIRO	Seattle, Wash., 1000 from 500
890	WBAA	W. Lafayette, Ind., 500 from 1000
	WJAR	Providence, R. I., 1000 from 500
1100	CRCV	Vancouver, B. C., 1000 from 500
1210	KPPC	Pasadena, Calif., 100 from 50
	WPAX	Thomasville, Ga., 100 from 250
1400	KHBC	Hilo, T. H., 250 from 100
1410	WHIS	Bluefield, W. Va., 500 from 250
1450	CFCT	Victoria, B. C., 50 from 75
		LOCATION

920 WORL Boston, Mass., from Needham CALL LETTERS

640 WHKC Columbus, Ohio, from WAIU

XEBC Agua Callente, L. C.

NETWORK
1500 KNOW Austin, Texas, new CBS

730

Short Wave Stations By Frequencies

Police Broadcasters are shown in italics.

Meas.	Meters			•	44.4		
	187.84	WPGG	Findlay, Ohio	woys.	Meters	WPDB	Chicago, Ill.
		WPGQ	Columbus, Ohio			WPDC	Chicago, Ill.
		WPHC	Massillon, Ohio			WPDD	Chicago, Ill.
		WPHK	Wilmington, Ohio			WPDU	Pittsburgh, Pa.
		WPHT	Cambridge, Ohio			WPED	Arlington, Mass.
		WQFT	Portable in Ohio			WPEII WPEI	Somerville, Mass.
1.606	189.69	KGXW	Port Alexander, Alaska			WPEJ	E. Providence, K. I. Brookline, Mass.
1.610	186.22	WQPC	Chicago, Ill.			WPFA	Newton, Mass.
		WQPD	DeQuoin, Ill.			WPFN	Fairhaven, Mass.
		WQPF WQPG	Effingham, Ill.			WPGF	Providence, R. I.
		W OPM	Sterling, Ill. Macomb, Ill.			WPGV	Boston, Mass.
		W OPP	Pontiac, Ill.			WPHG	Medford, Mass.
		WQPS	Springfield, Ill.			WOFL	Oak Park, Ill.
1.622	184.85	KGXU	Port Armstrong, Alaska	A 240	400 34	WQFX	Waukegan, Ill.
		KIJI	Port Conclusion, Alaska	2.318	129.34	CYQ	Toronto, Ont.
		KIJK	Washington Bay, Alaska	2.342	128.02	CGZ	Vancouver, B. C.
		KIJO	Port Herbert, Alaska	2.366	126.72	WAKC	Freehold, N. J.
		KIJS	Newport Walter, Alaska	2.300	120.72	WARC	Freehold, N. J.
		KIOG KIJV	Deep Cove, Alaska	2.382	125.87	KGHT	Brownsville, Texas
			Red Bluff Bay, Alaska			KGIIV	Corpus Christi, Tex.
1.634	183.48	WPHE WPHS	Marion County, Ind.			KNFE KNIIB	Duluth, Minn. Green Bay, Wisc.
		WPHU	Culver, Ind. Jasper, Ind.			WAKE	Oshkosh, Wisc.
		WOFE	Seymour, Ind.			WPDN	Auburn, N. Y.
		W QFW	Columbia City, Ind.			WPEA	Syracuse, N. Y.
1 642	107 50	WDDS	* *			WPFM	Birmingham, Ala.
1.642	182.59	W/RDS	E. Lansing, Mich.	•		WPGW'	Mobile, Ala.
1.658	180.83	KNHD	Redwood Falls, Minn.	2.390	125.45	CJW	St. John, N. B.
		KSW WPG C	Berkeley, Calif.			CJZ	Verdun, P. Q.
1.666	179.96	WMP	S. Schenectady, N. Y.	2.396	125.14	VYW'	Winnipeg, Man.
1.000	173.30	W PEL	Framingham, Mass. W.Bridgewater, Mass	2.406	124.61	KGIIZ	Little Rock, Ark.
		WPEV	Portable in Mass.			KGPW	Salt Lake City, Utah
		WPEW	Northampton, Mass.			KNHE	Fort Smith, Ark.
			Nashville, Tenn.	2 414	124.30	KACE .	Olympia, Wash.
1.674	179.10	KGHK	Palo Alto, Calif.	2 414	124.30	KACJ	Wenatchee, Wash.
		KGZT	Santa Cruz, Calif.			KACK	Bellingham, Wash.
		W'PSP	Harrisburg, Pa.			KACN	San Buenaventure, C.
1 682	178.25	KACC	Fairfold Laws			KACO	Tracy, Calif.
1.001	110.23	KACD	Fairfield, Iowa Atlantic, Iowa			KACS	Bakersfield, Calif.
		KGHO	Des Moines, Iowa			KACV KGHS	Walla Walla, Wash. Spokane, Wash.
		KNFN	Waterloo, Iowa			KGHW	Centralia, Wash.
		KNFO	Storm Lake, Iowa			KGPA	Seattle, Wash.
1.692	177.19	WQFT	Portable in Ohio			KGPF	Santa Fe, N. Mex.
		_				KGPS	Bakersfield, Calif.
1.698	176.57	KNGG	Phoenix, Ariz.			KGZA	Fresno, Calif.
		WAKJ	Duval County, Fla.			KGZM KGZN	El Paso, Texas Tacoma, Wash.
1.706	175.74	KGPC	St. Louis, Mo.			KGZO	Santa Barbara, Calif.
		WKDU	Cincinnati, Ohio			KGZV	Aberdeen, Wash.
		WPET	Lexington, Ky.			KGZX	Albuquerque, N. M.
1.710	175.33	CZ6F	Hamilton, Ont.			KNFA	Clovis, N. Mex.
4 740	175.13	COL2	U C1			KNFI	Mt. Vernon, Wash.
1.712	175.13	KACU	Havana, Cuba Gladewater, Texas			KNFP KNGU	Everett, Wash.
		KGHY	Whittier, Calif.			KNGY	Yakima, Wash. Lodi, Calif.
		KGJX	Pasadena, Calif.			WCK	Detroit, Mich.
		KGPJ	Beaumont, Texas			WMO	Highland Park, Mich
		KGPL	Los Angeles, Calif.			WPDA	Tulare, Calif.
		KGPQ	Honolulu, T. H.			WPDJ	Passaic, N. J.
		KGPR KGZB	Fort Worth, Texas Houston, Texas			WPDX WPDY	Detroit, Mich.
		KGZL	Shreveport, La.			WPFH	Atlanta, Ga. Baltimore, Md.
		KGZQ	Waco, Texas			WPFI	Columbus, Ga.
		KGZŸ	San Bernardino, Cal.			W'PGH	Albany, N. Y.
		KNFJ	Pomona, Calif.			WPGJ	Utica, N. Y.
		KNGE	Cleburne, Texas			WPGM	La Grange, Ga.
		KNGL KNHF	Galveston, Texas Denton, Texas			WQFB	Macon, Ga.
		KVP	Dullas, Texas			W ŌF J W ŌF V	Oneonta, N. Y. Augusta, Ga.
		VYR	Montreal, P. Q.			W RDR	Grosse Pointe, Mich.
		WAKF	Everett, Mass.				Herkimer, N. Y.
							And the Control of the Control

	Meters	CZC	Dut Propert D. C	Megs.	Meters	ICANEA:	Roanoke, Va.
2.416	124.09	CZG	Prince Rupert, B, C,			WQFG WQFII	- Koanoke, ya. Lynchburg, ya.
2.422	123.79	KACA	Atchison, Kans.	•		ijŶŎFÏ	Petersburg, Va.
		KACI	Eureka, Calif. Kansas City, Mo.				Huron, S. Dak.
		KGPE KGPG	Vallejo, Calif.	2.458	121.97	KACM	Big Spring, Tex.
		KGZC	Topeka, Kans.	2.430	121.31	KĞZI	Wichita Falls, Tex.
		KNGF	Sacramento, Calif.			KGZW	Lubbock, Texas
		KNGV	Salina, Kans. Buffalo, N. Y.	•		KNFB	Idaho Falls, Idaho
		WMJ WNFP	Niagara Falls, N. Y.			KNGW WPDG	Brownwood, Texas Youngstown, Ohio
		WPDR	Rochester, N. Y.			WPDO	Akron, Ohio
		#PDW	Washington, D. C.			WPDV	Charlotte, N. G.
		WPFU WPHB	Portland, Me. Nashua, N. II.			WPFS WPGD	Asheville, N. C. Rockford, Hl.
		7 1 1117	rusitett, itt ii.			WPHD	Steubenville, Ohio
2.430	123.38	KGPB	Minneapolis, Minn.			WQFZ	Ottawa, Ill.
		KGZJ	Phoenix, Ariz.			WRBII	Cleveland, Ohio
		KNGP KNHG	Shreveport, La. Prescott, Ariz.	2.466	121.58	KGOZ	Cedar Rapids, Iowa
		WAKH	Bloomfield, N. J.			KGPD	San Francisco, Calif.
		WCPD	Charleston, S. C.			KGPI	Omaha, Nebr.
		WPDI	Columbus, Ohio			KGPK KGPM	Sioux City, Iowa San Jose, Calif.
		WPDM WPDS	Dayton, Ohio St. Paul, Minn.			KGPN	Davenport, Iowa
		WPEK	New Orleans, La.			KGZG	Des Moines, loica
		WPFD	Highland Park, Ill.			WAKB WAKG	New London, Conn.
		WPFK	Hackensack, N. J. Portsmouth, Ohio			WPEC	Clearwater, Fla. Memphis, Tenn.
		WPGI WPHO	Zanesville, Ohio			WPEM	Woonsocket, R. I.
		W QFO	Lancaster, Ohio			W'PFV	Pawtucket, R. I.
		*****	4			WPFW WPGA	Bridgeport, Conn. Bay City, Mich.
2.442	122.77	KGHU KGPP	Austin, Texas Portland, Ore.			WPGB	Port Huron, Mich.
		KGPX	Denver, Colo.			WPGK	Cranston, R. I.
		KGZH	Klamath Falls, Ore.			WPGX	Worcester, Mass.
	•	KGZR	Salem, Ore.			WPIIA WPIIN	Fitchburg, Mass. Tampa, Fla.
		KNHM Wako	Fargo, N. Dak. Ft. Lauderdale, Fla.			W'PHP	Jackson, Mich.
		WMDZ	Indianapolis, Ind.			WQFA	New Haven, Conn.
		WPDE	Louisville, Ky.			WQFC	Gainsville, Fla.
	•	WPDF WPDH	Flint, Mich.			WQFK	Clearwater, Fla.
		WPDL	Richmond, Ind. Lansing, Mich.	2.474	121.19	КСНС	Las Vegas, Nev.
		WPEB	Grand Rapids, Mich.			KGHM KNFII	Reno, Nev. Garden City, Kans.
		WPES	Saginaw, Mich			KNGH	Dodge City, Kans.
		WPFC WPFE	Muskegon, Mich. Reading, Pa.			WAKI	Sandusky, Ohio
		WPFG	Jacksonville, Fla.			WPDP WPFO	Philadelphia, Pa. Knoxville, Tenn.
		WPFT	Lakeland, Fla.			WPFQ	Swarthmore, Pa.
		WPFX WPFY	Palm Beach, Flu. Yonkers, N. Y.			WPFS	Asheville, N. C.
		WPFZ	Miami, Fla.			WPGZ	Johnson City, Tenn.
		WPGL.	Binghamton, N. Y.			WPHY WOFY	Elizabethtown,Tenn. Mansfield, Ohio
		WPGP	Muncie, Ind.			W ŘDO	Toledo, Ohio
		WPHM WOFM	Orlando, Fla. Wilkes-Barre, Pu.	2 40	2 120.80	KGZE	San Antonio, Texas
		WOFO	Lafayette, Ind.	2.40	2 120.00	WPGT	New Castle, Pa.
		77 4 G P				WPHZ	Oil City, Pa.
2,450	122.38	KACF KACL	Chickasha, Okla. Altus, Okla.			WQFF	Monessen, Pa.
		KACP	Ponca City, Okla.			W'QFU'	Sharon, Pa.
		KACR	Seminole, Okla.	2.490	120.41		Kalaloch, Wash.
		KGHN	Hutchinson, Kans.			KGHD KGHX	Seattle, Wash. Santa Ana, Calif.
		KGHP KGPH	Lawton, Okla. Oklahoma City, Ok.			KĞZD	San Diego, Calif.
		KGPO	Tulsa, Okla.			KGZU	Lincoln, Nebr.
		KGPZ	Wichita, Kans.			KNFG	Olympia, Wash.
		KGZF KGZP	Chanute, Kans. Coffeyville, Kans.			KNFK KNFM	Bellingham, Wash. Compton, Calif.
		KNGK	Duncan, Okla.			KNFX	Ellenburg, Wash.
		KNGM	Rapid City, S. Dak.			KNGB	Yakima, Wash.
		KNGT	Muskogee, Okla.			KNGC KNGD	Vancouver, Wash.
		KNHC WPDK	Ada, Okla, Milwaukee, Wisc.			KNGJ	Walla Walla, Wash. El Centro, Calif.
		WPEE	Brooklyn, N. Y.			KNGN	Norfolk, Nebr.
		WPEF	Bronx, N. Y.			KNGQ	Wenatchee, Wash.
		WPEG	New York, N. Y.			KNGR KNGZ	Spokane, Wash. Ephrata, Wash.
		WPEP WPHF	Kenosha, Wisc. Richmond, Va.			WAKA	Ephrata, wash. Huntington, Ind.
		** * * * * * * * * * * * * * * * * * *	incommunita, rus.				

Megs.	Meters	WAKK	Frankfort, Ind.	Megs. 4.512	Moters 66.44	ZFS	Nessen Batana
		WPDT WPDZ	Kokomo, Ind. Fort Wayne, Ind.	4.600	65.18	HC2ET	Nassau, Bahamas
		WPFP	Clarksburg, W. Va.	4.753	63.08	WOO	Guayaquii, Ecuador Ocean Gate, N. J.
		-WPGN WPGO	South Bend, Ind. Huntington, N. Y.	4.755	63.05	CFU	Rossland, B. C.
		WPGS WPHI	Mineola, N. Y. Charleston, W. Va.	4.795	62.53	VE9BK	
		WPII J	Fairmont, W. Va.	4.820	62.20	GDW	Vancouver, B. C.
		WPHQ	Parkersburg, W. Va Marion, Ind.	4.865	61.63		Rugby, England
2.506	119.64	wou	Marshfield, Mass.			VDO WWV	Vancouver, B. C.
2.512		KGM	Ketchikan, Alaska	5.000	59.96		Beltsville, Md.
		KLB	Port Althorp, Alaska	5.025	59.67	ZFA	Hamilton, Bermuda
		KLC KLE	Kake, Alaska Rose Inlet, Alaska	5.520	54.32	TISHH	San Ramon, Costa Rica
2.538	118.13	KDH	Port Alexander, Aaa.	5.710 5.720	52.51 52.42	TGS YV10RSC	Guatemala City, Guat.
		KILD	Cordova (Eyak River)Aaa.	5.730	52.42	JVV	San Cristobal, Venezuela Nazaki, Japan
2.566	116.84	KFF	Union Bay, Alaska	5.760	52.05	HJ4ABD	Medellin, Colombia
		KHV Kla	Nakeen, Alaska Waterfall, Alaska	5.780	51.87	OAX4D	Lima, Peru
		KLD	Hidden Inlet, Aaa.	5.790	51.78	JVU	Nazaki, Japan
2.604	115.14	WVD	Seattie, Wash.	5.800	51.69	YV2RC	Caracas, Venezuela
		WXH	Ketchikan, Alaska	5.810	51.60	YV7RMO	Maracalbo, Venez.
2.616	114.61	KAEB Kaed	Hydaburg, Alaska Angoon, Alaska	5.820	51.52	CEC Tigph	Santiago, Chile San Jose, Costa Rica
		KAEF	Jack Wade, Alaska	5.830	51.43	TDD	Shinkio, Manchukuo
		KION	Tin City, Alaska	5.850	51.25	YV5RMO	Maracalbo, Venez.
2.632	113.91	KIJX	Shearwater Bay, Asa.	5.865	51.12	HIIJ	San Ped. de Macoris, D.R.
		KIMA	Kadiak Island, Alaska Port Hobron, Alaska	5.875 5.885	51.03 50.95	HRN HCK	Tegucigalpa, Honduras
		KIOC Kiod	Port Wakefield, Alaska Nellie Juan, Alaska	5.890	50.90	JIC	Quito, Ecuador Taihoku, Taiwan
		KIOH	Iron Creek, Alaska	5.895	50.86	YV8RB	Barquisimeto, Venez.
		KIOI	Akutan, Alaska	5.915	50.69	HH2S	Port-au-Prince, Haiti
2.726	109.98	WANB	Dinsmore, Fla.	5.930	50.56	HJ4ABE	Medellin, Colombia
2.912	102.96	KHW KHZ	Akutan, Alaska	5.940	50.47	TG2X	Guatemala City, Guat.
2.986	100.41	KIJP	Port Hobron, Alaska	5.950	50.39	HJN YNLF	Bogota, Colombia Nanagua, Nicaragua
2.300	100.41	KIJR	Uganik, Alaska Port San Juan, Alaska	5.980	50.14	HIX	Trujillo, D. R.
		KIJU	Todd, Alaska	F 00F		HJ2ABD	Bucaramanga, Colombia
2.994	100.14	KIEJ KIIK	Poorman, Alaska	5.985 6.000	50.10 49.97	XEVI TGWA	Mexico City, D. F.
		KIIL	Circle, Alaska Fort Yukon, Alaska	••••	40.00	XEBT	Guatemala City, Guate Mexico City, D. F.
		KIIM KINN	Hot Springs, Alaska Eagle, Alaska	6.005	49.93	CFCX	Montreal, P. Q.
		KIIO	McGrath, Alaska	6.006	49.92	HP5K HJ1ABJ	Coion, Panama Santa Marta, Colombia
		KIJB KILY	Cape Pole, Alaska Excursion Inlet, Alaska	6.010	49.89	CICX	Sydney, N. S.
		KNBZ	Pillar Bay, Alaska			COCO	Havana, Cuba
2.998	100.00	WXE	Anchorage, Alaska	6.012	49.87	HJ1ABC HJ3ABH	Quibdo, Colombia Bogota, Colombia
3.093	96.94	KIAP	Rose Iniet, Alaska	6.014	49.85	HI3U	Santiago, D. R.
		KIAW KIAY	Port Althorp, Alaska Ketchikan, Alaska	6.020	49.80	DIC	Zeesen, Germany
		KIBA	Kake, Alaska	c 020	40.72	XEUW	Veracruz, Ver.
		KICI	View Cove, Alaska	6.030 6.040	49.72 49.64	HP5B W1XAL	Panama City, Panama Boston, Mass.
3.100	96.72	KIIP	Luckyshot, Alaska	0.000	40.04	W4XB	Miami, Fla.
3.190	93.99	KIIJ KIIK	Tanana, Alaska Circle, Alaska	6.042	49.62	YDA	Tandjongpriok, N.E.I.
3.265	91.83	KIBZ	•	6.042	49.60	HJ1ABG HI9B	Barranquilla, Colombia Santiago, D. R.
3.203	31.03	KICE	Waterfall, Alaska Nakeen, Alaska	6.050	49.56	GSA	Daventry, Gt. Britain
		KICG KIDE	Union Bay, Alaska Hidden Inlet, Alaska	6.055	49.52	HJ3ABD	Bogota, Colombia
4.098	73.16	WND	•	6.060	49.48	W3XAU	Philadelphia, Pa.
4.178	71.76	WOO	Hialeah, Fla.	6.070	49.39	W8XAL CFRX	Cincinnati, Ohio Toronto, Ont.
			Ocean Gate, N. J.	6.080	49.31	DIM	Zeesen, Germany
4.253 4.273	70.50 70.16	WKF RV15	Lawrenceville, N. J. Khabarovsk, USSR.			HP5F	Colon, Panama
7.213	. 0.10		auaruvsk, USSK.			W9XAA	Chicago, III.

Megs. 6.085	Meters 49.27	HJ5ABD	Cali, Colombia	Megs. 6.814	Meters 44.00	нін	San Ped. de Macoris, D.R.
6.090	49.23	CRCX	Toronto, Ont.	6.860	43.71	KEL	Bolinas, Calif.
6.098	49.17	HI3C	La Romana, D. R.	6.905	43.42	GDS	Rugby, Gt. Britain
6.100	49.15	HJ4ABL	Manizales, Colombia	7.100	42.23	FO8AA	Papeete, Tahiti
0.200		W3XAL	Bound Brook, N. J.	7.280	41.18	HJ1ABD	Cartagena, Colombia
		W9XF	Chicago, III.	7.380	40.63	XECR	Mexico City, D. F.
6.110	49.07	CHNX GSL	Halifax, N. S. Daventry, Gt. Britain	7.520	39.87	ккн	Kahuku, T. H.
		HJ4ABB	Manizales, Colombia		38.47	НВР	Geneva, Switzerland
6.115	49.03	HJ1ABE	Cartagena, Colombia	7.797			
6.120	48.99	W2XE	New York, N. Y.	7.850	38.19	HC2JSB	Guayaquil, Ecuador
		XEFT YDA5	Veracruz, Ver. Bandoeng, N.E.I.	7.900	37.95	VE9EW	Toronto, Ont.
0.430	40.04			7.920	37.86	GDP	Rugby, Gt. Britain
6.130	48.91	COCD TGXA	Havana, Cuba Guatemala City, Guat.	7.960	37.67 37.24	VLZ WXA	Sydney, Australia Juneau, Alaska
		XEOK	Tijuana, L. C.	8.050 8.075	37.24	WEZ	Rocky Point, N. Y.
6.135	48.87	HJ4ABP	Medellin, Colombia	8.095	37.04	VLK	Sydney, Australia
6.140	48.83	W8XK	Pittsburgh, Pa.	8.560	35.03	woo	Ocean Gate, N. J.
6.150	48.75	CB615	Santlago, Chile	8.565	35.00	HAT3	Budapest, Hungary
		CJRO	Winnipeg, Man.	8.575	34.96	TYD2	Pontoise, France
		HI5N HJ5ABC	Santiago, D. R. Cali, Colombia	9 500	24.00	YCP Ynva	Balikpapan, N.E.I. Managua, Nicaragua
6.155	48.74	COKG	Santiago, Cuba	8.590 8.620	34.90 34.78	WVD	Seattle, Wash.
		YV3RC	Caracas, Venezuela	8.665	34.60	Dreoo	Camaguey, Cuba
6.165			•	8.680	34.54	GBC	Rugby, Gt. Britain
6.170	48.60	HJ2ABA HJ3ABF	Tunja, Colombia Bogota, Colombia	8.690	34.50	vwz	Kirkee, India
6.182	48.50	XEXA	Mexico, D. F.	8.750	34.26	ZBW	Hong Kong
		HI1A	·	8.900	36.50	НСЈВ	Quito, Ecuador
6.185 6.230		OAX4G	Santiago, D. R. Lima, Peru	9.010		KEJ	Bolinas, Calif.
6.235		HRD	La Ceiba, Honduras	9.020	33.24	GCS	Rugby, Gt. Britain
6.280		CO9WR	Sancti-Spiritus, Cuba	9.045		VWY HAT4	Kirkee, India Budapest, Hungary
		HIG	Trujillo, D. R.	9.125 9.168		YVR	Maracay, Venezuela
6.300	47.59	HJ1ABH YV12RM	Clenaga, Colombia Maracay, Venezuela	9.280		GCB	Rugby, Gt. Britain
6.315	47.48	HIZ	Trujillo, D. R.	9.415		PLV	Bandoeng, N. E. I.
6.330		JZG	Nazaki, Japan	9.428	31.80	СОСН	Havana, Cuba
6.356		HRP1	San Pedro Sula, Hond.	9.448	31.74	WES	Rocky Point, N. Y.
6.375	47.03	YV4RC	Caracas, Venez.	9.450		TG1X	Guatemala City, Guat.
6.400	46.85	YV9RC	Caracas, Venez.	9.460	31.69	XGOX WKJ	Nanking, China New Brunswick, N. J.
6.410		TIPG	San Jose, Costa Rica	9.470	31.66	WET	Rocky Point, N. Y.
6.420		HI1S	Puerto Plata, D. R. Hicksville, N. Y.	9.480		KES	Bolinas, Calif.
6.425	46.66	W2XGB W3XL	Bound Brook, N. J.	9.490	31.59	OXY	Copenhagen, Denmark
		W9XF	Chicago, III.		24.50	VK3ME	Melbourne, Australia
6.446	46.50	W9XBS HJ1ABB	Chicago, III. Barranquilla, Colombia	9.500 9.510		PRF5 GSB	Rio de Janeiro, Brazil Daventry, Gt. Britain
6.450			Ibague, Colombia	3.310	31.03	HIU	Buenaventura, Colombia
6.480			Trujilio, D. R.	9.520	31.49	XEDQ	Guadalajara, Jal.
6.500		HIL	Trujillo, D. R.	9.530	31.46	W2XAF	Schenectady, N. Y.
		HI4D	Trujillo, D. R.	9.540	31.43	DJN LKJ1	Zeesen, Germany Jeloy, Norway
6.520			Valencia, Venezuela Bolivar, Venez.	9.560	31.56	DJA	Zeesen, Germany
6.545 6.550			San Jose, Costa Rica	9.570		W1XK	Boston, Mass.
6.620			Rio Bamba, Ecuador	9.580		GSC	Daventry, Gt. Britain
6.630			Trujillo, D. R.			3LR	Melbourne, Australia
6.650			Guayaquil, Ecuador	9.585		VK2ME	Sydney, Australia
6.662	45.00	WXH	Ketchikan, Alaska	9.590	31.26	HP5J PCJ	Panama City, Panama Hilversum, Netherlands
6.672			Maracay, Venezuela			VK6ME	Perth, Australia
6.700			San Jose, Costa Rica	9.595	31.25	W3XAU HBI	Philadelphia, Pa. Geneva, Switzerland
6.750			Nazaki, Japan Lawrenceville, N. J.	9.600		HBL CB960	Santiago, Chile
6.75	5 44.38	WOA	Manicottie, it. J.	3.000	72.23		-antiago, onno

						12 Q C DI	CIES
Megs 9.610	. Mete		Castageur Catagette		Mete		
9.617			' Cartagena, Colombia Port-au-Prince, Haiti	13.585			Rugby, Gt. Britain
9.635	31.1		Rome, Italy	13.880			Raboul, New Guinea
9.650			•	13.990			Rugby, Gt. Britain
9.660			Lisbon. Portugal	14.440			Rugby, Gt. Britain
9.675			Buenos Aires, Argentina	14.590	20.5	5 WMN	Lawrenceville, N. J.
			Zeesen, Germany	14.960	20.0	4 YSL	San Salvador, El Salv.
9.700		•	Macau	14.970	20.0	3 LZA	Sofia, Bulgaria
9.755			Havana, Cuba	15.000	19.99	wwv	Beitsville, Md.
9.862			Madrid, Spain	15.040	19.9	RKI	Moscow, USSR.
9.870	30.38	WON	Lawrenceville, N. J.	15.055	19.9	WNC	Hialeah, Fia.
9.895	30.3	0 LSN	Buenos Aires. Argentina	15.120	19.83	HVJ	Vatican City
9.950	30.13	GCU	Rugby, Gt. Britain	15.140	19.80	GSF	Daventry, Gt. Britain
9.990	30.01	L KAZ	Manila, P. I.	15.180	19.75		
10.000	29.98	wwv	Beltsville, Md.	15.200			Daventry, Gt. Britain
10.040	29.86	ни	Trujillo, D. R.	15.210			Zeesen, Germany
10.042	29.85	DZB	Zeesen, Germany	15.220			Pittsburgh, Pa.
10.055	29.82	SUV	Cairo, Egypt	15.245			Hilversum, Netherlands
		ZFB	Hamilton, Bermuda				Pontoise, France
10.135	29.58	OPM	Leopoldville, Bel. Congo	15.250			Buenos Aires, Argentina
10.160	29.51	RIO	Baku, USSR.	15.260	19.65	GSI	Daventry, Gt. Britain
10.220	29.34	PSH	Rio de Janeiro, Brazil	15.270	19.64	W2XE	New York N. Y.
10.250	29.25	LSL	Buenos Aires. Argentina	15.310	19.58	GSP	Daventry, Gt. Britain
10.260	29.22		Bandoeng, N. E. I.	15.330	19.56	W2XAD	Schenectady, N. Y.
10.285 10.290	29.15 29.14		Zeesen, Germany	15.340	19.55	DJR	Berlin, Germany
10.230	29.02		Panama City, Panama	15.355	19.52	KWU	Dixon, Calif.
10.335	29.01		Brussels, Belgium St. George, Bermuda	15.360	19.52	DZG	Zeesen, Germany
10.610	28.25	WEA	Rocky Point. N. Y.	15.370	19.51	HAS3	Budapest, Hungary
10.660	28.13	JVN	Nazaki, Japan	15.415	19.45		Dixon, Calif.
10.670	28.10		Santiago, Chile	16.140	18.58		Rugby, Gt. Britain
10.740 10.770	27.92 27.84		Nazaki. Japan	17.080	17.55		
10.840	27.66	KWV	Rugby, Gt. Britain Dixon, Calif.	17.120	17.51	-	Rugby, Gt. Britain
10.950	27.38	HS8PJ	Bangkok, Siam				Ocean Gate, N. J.
11.595	25.86	VRR4	Stoney Hill, Jamaica	17.310	17.32	W3XL	Bound Brook, N. J.
11.715	25.59	TPA4	Pontoise, France	17.480	17.15		Kirkee. India
11.720	25.58	CJRX	Winnipeg, Man.	17.760	16.88	W2XE	New York, N. Y.
11.750 11.770	25.52 25.47	GSD DJD	Daventry, Gt. Britain	17.775	16.87	PHI	Hilversum, Netherlands
11.790	25.43	W1XAL	Zeesen, Germany Boston, Mass.	17.780	16.86	W3XAL W8XK	Bound Brook, N. J.
11.795	25.42	DIO	Zeesen, Germany	17.790	16.85	GSG	Pittsburgh, Pa.
11.810	25.39	I2RO	Rome, Italy			-	Daventry, Gt. Britain
11.820	25.37	GSN	Daventry. Gt. Britain	18.310	16.40		Rugby, Gt. Britain
11.830	25.34	W2XE W9XAA	Wayne, N. J.	18.350	16.34	WLA	Lawrenceville, N. J.
11.855	25.29	DJP	Chicago, III. Zeesen, Germany	18.620	16.10	GAU	Rugby, Gt. Britain
11.860	25.28	GSE	Daventry, Gt. Britain	18.670 18.830	16.06 15.92	OCI PLE	Lima, Peru
11.870	25.25	W8XK	Pittsburgh, Pa.	19.480	15.39	GAD	Bandoeng, N. E. I. Rugby, Gt. Britain
11.880	25.24	TPA3	Pontoise, France	19.630	15.27	VQG	Nairobi, Kenya
12.000 12.225	24.99	RNE	Moscow USSR.	19.650	15.26	LSN5	Buenos Aires, Argentina
12.225	24.53 24.49	TFJ GBU	Reykjavik, Iceland	20.380	14.71	GAA	Rugby, Gt. Britain
12.840	23.35	WOO	Rugby, Gt. Britain Ocean Gate, N. J.	21.470	13.96	GSH	Daventry, Gt. Britain
13.075	22.93	VPD	Suva. Fiji	21.520 21.530	13.93	W2XE	New York, N. Y.
13.380	22.41	IDU	Asmara. Eritrea	21.530	13.93 13.92	GSJ W8XK	Daventry, Gt. Britain
13.410	22.36	WCT	San Juan, Puerto Rico	26.100		GSK	Pittsburgh, Pa. Daventry, Gt. Britain
							y, an Dilloin

ARGEN (LØA-I		BRIT COLUM		Bogot HJN	5.950	Puerto HI1S	Plata 6.420	D1C D1B	15.200 6.020	San Ped HRP1	ro Sula 6.356
(207-	,			HJ3ABD	6.055	H172	0.420	DID	11.770	HRFI	0.330
				HJ3ABF	6.170	San Ped	Iro de	DJM	6.080	Teguci	galoa
Buenos	Aires	Prince F		HJ3ABH	6.012	Maco		DJN	9.540	HRN	5.875
.RU	15.250	CZG	2.416			нін	6.814	DIO	11.795	TTRIT	3.070
RX	9.660	Rossi		Bucaram	_	HID	5.865	DJP	11.855		
SL	10.250	CFU	4.755	HJ2ABD	5.980	HILL	3.863	DIG	15.280	HONK	ONG
.SN	9.895	Vanco	uver	Buenaver	stura	Santiago	de Los	DJR	15.340	(2)
.SN	14.480	CGZ	2.342		9.510	Cabali		DZA	9.675		
.SN5	19.650	VDO	4.865	HJU	9.510	HI-1-A	6.185	DZB	10.042		
		VE9BK	4.795	Cali		HI3U	6.014	DZC	10.285	Honk	ong
AUSTR	ALIA	***************************************	4	HJ5ABC	6.150	HI5N	6.150	DZG	15.360	ZBW	8.750
(VHA-V		MANIT	CORA	HJ5ABD	6.085	HI9B	6.045				
(****	, ,	man.		1		пізв	0.043				
				Cartage	ena	Truji	Ho	GRI		HUNG	
Melbo	urne	Winn		HJ1ABD	7.280	HIG	6.280	BRIT		(HAA-	HAZ)
VK3LR	9.580	CJRO	6.150	HJ1ABE	6.115	HII	10.040	(G ;	MI)		
VK3ME	9.490	CJRX	11.720	HJ1ABP	9.610	HiL	6.500			Buda	pest
Per	e b	VYW	2.396	Clena	ga.	HIT	6.630	Dave	ntry		•
KEME	9.590			l	_		5.980	GSA	6.050	HAS3	15.370
		NE	W	HJ1ABH	6.300	HIX	6.315	GSB	9.510	HAT3	8.56
Sydr	1ey	BRUNS	WICK	lbagu	ue	HIZ	6.500		9.580	HAT4	9.125
VK2ME	9.585		-	HJ4ABC	6.450	HI4D	6.480	GSC GSD	11.750		
VLK	8.095	St. J	ohn	Maniz	ales	HI4V	0.480			ICEL	AND
VLZ	7.960	CIM 21. 1	2.390	HJ4ABB	6.110			GSE	11.860	(TFA-	
		6314	2.330	HJ4ABL	6.100	ECUA		GSF	15.140	I (IFA:	4 4 44
D 4 1 1 4	MAC					(HCA-	HCZ)	GSG	17.790		
BAHA		NOVA S	SCOTIA	Medel				GSH	21.470	Reyk	lavik
(ZF	-)			HJ4ABD	5.760	Guaya	nauli	GSI	15.260	TFJ	12.225
		Hali	fax	HJ4ABE	5.930	1		GSJ	21,530	153	14.443
Nass	sau	CHNX	6.110	HJ4ABP	6.135	HC2ET	4.600	GSK	26.100		
ZFS	4.512			Quib	do	HC2JSB	7.850	GSL	6.110	INC	DIA
	41020	Syd	ney	HJ1ABC	6.010	HC2RL	6.650	GSN	11.820	(VTA-	
551.0		CJCX	6.010	1	W	Qui	to	GSO	15.180	,	
BELG		0307		Santa P	e noc	1		GSP	15.310		
CON				HJ1ABJ	6.006	HCJB	8.900	D.,	gby	VWY	9.04
(0	P-)	ONT	KIU	Tun		HCK	5.885			VWY2	17.48
				HJ2ABA	6.170	Rioba	mba	GAA	20.380	VWZ	8.69
Leopol	dville	Hami	iiton					GAD	19.480		
OPM .	10.135	CZ6F	1.710	COSTA		PRADO	6.620	GAS	18.310		
OF M	10.133	l .		(TIA-T	(ZIZ			GAU	18.620	ITAI	LY (I)
		Tore	onto			EGY	'PT	GBA2	13.990		
BELG		CFRX	6.070	San J	lose	(STA-	SUZ)	GBB	13.585	12RO	9.63
(ONA-	OTZ)	CRCX	6.090	TIEP	6.700			GBC	8.680	12RO	11.81
		CYQ	2.318	TIGPH	5.820	Cai	**	GBC	17.080		
Brus	sels	VE9EW	7.900	TIPG	6.410			GBU	12.290		
ORK	10.330			TIRCC	6.550	SUV	10.055	GBW	14.440	JAM	AICA
•	20.550	QUE	BEC	San Ra	ımon			GBX	16.140		
				TISHH	5.520	EL SAL	VADOR]	GCB	9.280	٠.	
BERM	IUDA							GCP	10.770	Stone	y Hill
(ZF	F-)	Mon	treal	CUB	I.A.	San Sa	lvador	GCS	9.020	VRR4	11.59
		CFCX	6.005	(CLA-C		1		GCU	9.950		
Hami	litor	VYR	1.712	COA-C		YSL	14.960	GDP	7.920		N / 1
		Ver	due					GDS	6.905	JAPA	(L) M.
ZFA	5.025	i		Camag	Hev	ERIT	REA	GDW	4.820		
ZFB	10.055	CJZ	2.390	Coald	8.665	1	-			Na	taki
St. G	eorge			1 20334	-1440	1				JVM	10.74
	_	СН	II F	Hava		Asm			EMALA	JVM	10.66
ZFD	10.335		-CEZ)	COCD	6.130	IDU	13.380	TGA	-TGZ)	JVT	6.75
		(CAA	/	COCH	9.428					JVÜ	5.79
BRA	711	_		COCO	6.010		PA-VS7	C			5.73
	·PYZ)	Sant	tiago	COCQ	9.755			1	nala City	JVV	3.73
(FFA'	/	CB615	6.150		1.712	-		TGS	5.710		
		CB960	9.600		oiritu-	Su		TGWA	6.000	KENY	(VQ7-
Rio de	Janeiro	CEC	5.820	COSWR	6.280	VPD	13.075	TGXA	6.130		
PRF5	9.500	CEC	10.670	1				TG1X	9.450	Nat	robl
PSH	10.220			Santi		FRA	NCE	TG2X	5.940	VQG	19.63
		СН	INA	COKG	6.155	(F: TY				144	23.93
p.i			-XUZ)	DENI	ADM			يمو	AITI		0.41
	ARIA	,,,,,,,	·/	DENM		Do-	e les			MA	CAU
(LZA	-LZZ)			OUA-	UZZ)		toise			_	
		· Nan	king			TPA2	15.245	Port a	u Prince	Ma	cau
So	fia	XGOX	9.460	Copeni		TPA3	11.880	HH2S	5.915	CQN	9.70
LZA	14.970	1		OXY	9.490	11.74	11.715	HH3W	9.617		
	24.014		MBIA	000000	1000	TYD2	8.575				
			-HKZ)	DOMIN				HON	DURAS	1	HUKUC
	IADA	(HJA:		REPU		GERMA	NY (D)		-HRZ)		J)
	-CKZ;	Pares	ngullia	" (HIA-	HIZ)		(2)				
	-CZZ;		•			7.00	sen	i.e	Celba	Shi	nklo
	-vgz:	HJ1ABE	6.447	r∣ La Ro		1				TDD	5.83
	-VYZ	HJ1AB		HI3C		DJA	9.560	HRD			

			10111	******	<u> </u>	10110	DI L	<u>JCAIIC</u>)INO		
	XICO -XFZ)	ISL	IPPINE ANDS	Anch WXE	orage 2.998	Port	San Juan 2.986	nenena.	odi 2.414		onville
Guadaljara		- (K)		Ang	oon	P. V	Vakefield		ngeles	WFFG	2.442
	-	M	nila	KAED	2.616	• 1		KGPI	1.712	, Lake	land
XEDQ	9.520	'		Cape	Pole	KIOC	2.632	1	Alto	WPFT	2.442
Mexic	o City	KAZ	9.990	KIJB	2.994	Rec	Bluff	KGHK	1.674	Mia	em)
XEBT	6.000			Cir	cle	KIOG	1.622			WPFZ	2.442
XECR	7.380	, ,	TUGAL	KIIK	2.994	Ros	e Iniet		idena	W4XB	6.040
XEVI	5.985	; (CS	A-CUZ)	KIKK	3.190			KGJX	1.712	Orla	-
XEXA	6.182			Cord	lova	KLE	3.093	1	nona	WPHM	2.442
Tiju	ıana	Lis	bon	KILD	2.538	. 1	2.512	KNFJ	1.712	: 1	Beach
XEOK	6.130	CT1AA	9.650	1		Snear	water Bay		mento	WPFX	2.442
	cruz			Deep KHP	1.622	KIJW	2.632	KNGF	2.422	! 	
		SI	AM	1		Ta	anana	San Be	rnardino	WPHN	-
XEFT	6.120	/HSA	-HSZ)	Eag		KIIJ	3.190	KGZY	1.712	WPHN	2.466
XEUW	6.020			KIIN	2.994	Ti₁	n City	l sa	an	GEO	2GIA
NETHE	DIANDS	Ban	gkok	Excursion		KION	2.616		entura		TOIA
	-PIZ)	HS8PJ	10.950	KILY	2.994	1	odd -	KACN	2.414	Atia	nta
- (1 AA				Fort Y	ukon	ענוא ו	2.986	San	Diego	WPDY	2.414
Hilve	rsum	SP	AIN	KIIL	2.994			KGZD	2,490	Augu	
PCJ	9.590		-EHZ)	Hidden	Inlet		ganik	San Fr		WQFV	2.414
PCJ	15.220	,		KIDE	3.265	KIJP	2.986	KGPD	2.466	1 '	
PHI	17.775		drid	KLD	2.566		on Bay			Colum	
	11.773	EAQ		Hot Sp		KFF	2.566	San J		WPFI	2.414
NETHE	RLAND	LAU	9.862	KIIM	2.994	KICG	3.265	KGPM	2.466	La Gr	
EAST I		SWITZE	RLAND	1			v Cove	Santa		WPGM	2.414
(PKA-			-HBZ)	Hydal KAEB	2.616	KICI	3.093	KGHX	2.490	Mad	on.
YBA-		(IIBA	-1102)			Washir	igton Bay	Santa B	arbara	WQFB	2.414
		Ger	ieva	Iron C		KIJK	1.622	KGZO	2.414		
Balikp	papan	HBL	9.595	KIOH	2.632	Wat	terfall	Santa	Cruz	HAW	AII
YCP	8.575	HBP	7.797	Jack V		KIBZ	3.265	KGZT	1.674	*	
Band	00mg	,	••••	KAEF	2.616	KLA	2.566	Tra		Hono	
	•			June	211	Wes	angell	KACO	2.414	KGPQ	1.712
PLE	18.830	TAF	HITI	WXA	8.050	KDK	2.538			Kahu	
PLV	9.415						2.330	Tul: WPDA		KKH	7.520
PMN	10.260	Pap	eete	Kadiak KIJX	2.632	ADI	ZONA		2.414		
YDA5 6.120		FO8AA	7.100			ARI	ZUNA	Vali		IDAI	но
Tandjon	igprick			KIBA 3.05		Phoenix		KGPG	2.422	Idaho	Ealle
YDA	6.040	TAIW	AN (J)	KLC	3.093 2.512	KNGG	1.698	Whitt		KNFB	2.458
						KGZJ	2.430	KGHY	1.712	I Kill D	2.438
NEW GL	JINEA	Taih	oku	Ketchi		Pre	scott				016
		JIC	5.890	KGM	2.512	KNHG	2.430	COLORADO		ILLINOIS	
Rabe	oul			KIAY WXH	3.093 2.604					Chicago	
VJZ	13.880	UNIO	N OF	WXH	6.662	ARK	ANSAS	Den		WPDB	1.712
		SOCIA						KGPX	2.442	WPDC	1.712
NICAR		SOV	IET	Luckys			Smith	CONNEC	TICUT	WPDD	1.712
(YNA-	YNZ)	REPU	BLICS	KIIP	3.100	KNHE	2.406	COMME	,11001	WQPC	1.610
		(R;	U)	McGra		Little	Rock	Bridge	nort	W9XAA	6.080
Mana	gua			KIIO	2.994	KGHZ	2.406	WPFW	2.466	W9XAA	11.830
YNLF	5.950	Bal	ku	Nake	en	-				W9XBS	6.425
YNVA	8.590	RIO	10.160	KHV	2.566	CALIF	ORNIA ,	New H	aven 2.466	W9XF	6.100
		Khaba	- 1	KICE	3.265	***************************************		1 -		W9XF	6.425
NORW		I		Neilie J	luan		rsfield	New Lo		DeQu	
(LAA-L	-NZ)	RV15	4.273	KIOD	2 C 2 KACS 2.414 V		WAKB	2.466	WQPD	1.610	
fat-		Mosc	ow	Newport	Walter	KGPS	2-414	DISTRIC	T CE	Effingf	1am
Jelo	-	RKI	15.040	KIJS	1.622		keley	COLUN		WQPF	1.610
LKJ1	9.540	RNE	12.000	Pillar	- 1	KSW	1.658	55201		Highland	l Park
D441-	200			KNBZ	2.994		inas	Washin	gton		2.430
PANA		UNIT	ED			KEE	7.715	WPDW	2.422	Maco	
(HPA-I	174)	STAT	TES	Poorm KIEJ	2.994	KEJ	9.010			WQPM	1.610
Colo	n	(K; N:	; W)		- 1	KEL	6.860	FLOR	IDA	-	
Colon		-		Port Alex		KES	9.480			Oak Pa WQFL	ark 1.712
HP5F	6.080	ALABA	AMA	KDH	2.538		pton	Clearw		-	
IP5K	6.005			KGXW	1.606	KNFM	2.490	WAKG	2.466	Ottav	
Panama	City	Birmin	gham	Port Ait			con	WQFK	2.466	WQFZ	2.458
IP5B	6.030	WPFM	2.382	KIAW	3.093	KWN	21.060	Dinsm	ore	Ponti	
łP5J	9.590			KLB	2.512	KWO	15.415	WANB	2.726	WQPP	1.610
		Mob	- 1	Port Arms		KWU	15.355	Duval Co		Rockfo	ord
PER	- 1	WPGW	2.382	KGXU		KWV	10.840	WAKJ	1.698	WPGD	2.458
(OAA-O	CZ)			Port Conc	1.622	EI C	entro	Ft. Laud		Sterii	ng
		ALAS	KA	Port Her		KNGJ	2.490	WAKO	2.442	WQPG	1.610
Lim	a		-	KIJO Hel	1.622	Eur	eka	Gaines		Springf	
AX4D	5.780	Akut	an	Port Hol		KACI	2.422	WQFC Hlale	2.466	WQPS	1.610
AX4G	6.230	KHW	2.912	KHZ	2.912	Fre	sno	WND	4.098	Wauke	
CI	18.670	KIOI	2.632	KIMA		KGZA	2.414		15.055		1.712
											1.614

INDIANA	KENTUCKY	Flint	NEW HAMPSHIRE	Mineola	Toledo WRDQ 2.474
- 1 1 - Olan		WPDF 2.442	MANIFORINE	WPGS 2.490	
Columbia City WQFW 1.634	Lexington	Grand Rapids	Nashua	New York	Wilmington
	WPET 1.706	WPEB 2.442	WPHB 2.422	WPEG 2.450	WPHK 1.596
Cuiver WPHS 1.634	Louisville	Grosse Pointe		Niagara Falls	Youngstown
Fort Wayne	WPDE 2.442	WRDR 2.414	NEW JERSEY	WNFP 2.422	WPDG 2.458
WPDZ 2.490	LOUISIANA	Highland Park		Oneonta	Zanesville
Frankfort	LUUISIANA	· .	Bloomfield	WQFJ 2.414	WPHO 2.430
WAKK 2.490	New Orleans		WAKH 2.430	Rochester	
Huntington	WPEK 2.430	Jackson	Bound Brook	WPDR 2.422	OKLAHOMA
WAKA 2.490	Shreveport	WPHP 2.466	W3XAL 6.100	Rocky Point	
Indianapolis	KGZL 1.712	Lansing	W3XAL 17.780	WEA 10.610	Ada
WMDZ 2.442	KNGP 2.430	WPDL 2.442	W3XL 6.425 W3XL 17.310	WES 9.448	KNHC 2.450
Jasper	BAARNE	Manitou Island		WET 9.470	Altus
WPHU 1.634	MAINE	WWAJ 3,410	Freehold	WEZ 8.075	KACL 2.450
Kokomo	Portland	Marquette	WAKC 2.366	Schenectady W2XAD 15.330	Chickasha
WPDT 2.490	WPFU 2.422	WWM 3.410	Hackensack	W2XAD 15.330 W2XAF 9.530	KACF 2.450
Lafayette			WPFK 2.430		Duncan
WQFQ 2.442	MARYLAND	Muskegon	Lawrenceville	S. Schenectady WPGC 1.658	KNGK 2.450
Marion	Daltiman	WPFC 2.442	WKF 4.253	1	Lawton
2.490	Baitimore WPFH 2.414	Passage Island	WKF 19.220	Syracuse WPEA 2.382	KGHP 2.45
Marlon County	Beitsville	WWAL 3.410	WLA 18.350	-	Muskogee
WPHE 1.634	WWV 5.000	Poe Reef	WMN 14.590	Utica WPGJ 2.414	KNGT 2.45
Muncie	WWV 10.000	WRJ 3.410	WOA 6.755		Oklahoma Cit
WPGP 2.442	WWV 15.000	Port Huron		Yonkers WPFY 2.442	KGPH 2.45
Richmond			New Brunswick	2.442	Ponca City
WPDH 2.442	MASSA-	WPGB 2.466	WKJ 9.460	NORTH	KACP 2.45
Seymour	CHUSETTS	Rock of Ages	Ocean Gate	CAROLINA	Seminole
WQFE 1.634	A -15	WWAM 3.410	WOO 4.178		KACR 2.45
South Bend	Arlington WPED 1.712	Saginaw	WOO 4.753	Asheville	Tulsa
WPGN 2.490	Boston	WPES 2.442	WOO 8.560	WPFS 2.458	KGPO 2.45
	WPGV 1.712	Sault Ste. Marie	WOO 12.840 WOO 17.120	WPFS 2.474	
IOWA	W1XAL 6.040	NOR 2.670	1100	Charlotte	OREGON
	W1XAL 11.790	NOR 2.698	rassaic	WPDV 2.458	
Atlantic KACD 1.682	Brookline	Selfridge Field	WPDJ 2.414	NORTH	Klamath Falls
	WPEJ 1.712	VK1 6.425	Wayne	DAKOTA	KGZH 2.44
Cedar Rapids KGOZ 2.466	Everett		W2XE 6.120		Portland
	WAKF 1.712	MINNESOTA	W2XE 11.830	Fargo	KGPP 2.44
Davenport	Fairhaven	, WHITESOTA	W2XE 15.270 W2XE 17.760	KNHM 2.442	
	WPFN 1.712	Duluth	W2XE 21.520	оню	KGZR 2.44
Des Moines KGHO 1.682	Fitchburg	KNFE 2.382		01110	PENN-
KGZG 2.466	WPHA 2.466	Minneapelis	NEW MEXICO	Akron	SYLVANIA
Fairfield	Framingham	KGPB 2.430		WPDO 2.458	
KACC 1.682	WMP 1.666		Albuquerque	Cambridge	Harrisburg
Sloux City	Marshfield	Redwood Falls	KGZX 2.414	WPHT 1.596	WPSP 1.67
KGPK 2.466	WOU 2.506	KNHD 1.658	010113	Cincinnati	Monessen
Storm Lake	Medford	St. Paul	KNFA 2.414	111100 2000	WQFF 2.41
KNFO 1.682	WPHG 1.712	WPDS 2.430		W8XAL 6.060	New Castle WPGT 2.48
Waterloo	Millis	Barccolles	KGPF 2.414	Olevelana	1
KNFN 1.682	W1XK 9.570	MISSOURI	NEW YORK	WRBH 2.458	Oil City WPHZ 2.4
	Newton	Kansas City	ITETT TORK	Columbus WPDI 2.430	
KANSAS	WPFA 1.712	KGPE 2.422	Albany	WPG0 1 596	
Atchison	Mottinginpion	Se Louis	WPGH 2.414	·	W3XAU 6.0
KACA 2.422	WPEW 1.666	KGPC 1.70	Auburn	Dayton WPDM 2.430	MANAGE A F
Chanute	Somerville		- WPDN 2.382	Findlay	Pittsburgh
KGZF 2.450	WPEH 1.712	NEBRASKA	Binghamton	WPGG 1 596	WPDU 1.7
Coffeyville	W. Bridgewater	Lincoln	WPGL 2.442	Lancaster	W8XK 6.1
KGZP 2.450	WPEL 1.666	KGZU 2.49	Brenx	WOED 2430	W8XK 11.8 W8XK 15.2
Dodge City	Worcester	1	WPEF 2.450	Mansfield	W8XK 15.2
KNGH 2.474		KNGN 2.49	Brooklyn	WOEV 2474	
Garden City	MICHIGAN	Omaha	WPEE 2.450	Massillon	Reading
KNFH 2.474		KGPI 2.46	Buffalo	WPHC 1 596	
	Bay City		_ WMJ 2.422	Portsmouth	Sharon
Hutchinson		NEVADA	Herkimer	WDCI 2430	
Hutchinson KGHN 2.450	WPGA 2.466	MEAVEV			
Hutchinson KGHN 2.450 Salina	Detroit		= 2.414	,	Swarthmore
Hutchinson KGHN 2.450	Detroit WCK 2.414	Las Vegas	Hicksville	Sandusky	Swarthmore WPFQ 2.4
Hutchinson KGHN 2.450 Salina KNGV 2.422	Detroit WCK 2.414	Las Vegas	Hicksville	Sandusky WAKI 2.474	

PUERTO RICO	TENNESSEE	El Paso	WASHINGTON	Walla Walla	VATICAN
San Juan WCT 13.410	2.474	KCDD 4742	Aberdeen	KACV 2.414 KNGD 2.490	STATE (HVA-HVZ)
RHODE ISLAND	Johnson City WPGZ 2.474 Knoxville	Gaiveston KNGL 1.712 Gladewater	Bellingham KACK 2.414 KNFK 2.490	KACJ 2.414 KNGQ 2.490 Yakima	Vatican City HVJ 15.120
Cranston WPGK 2.466	Memphis WPEC 2.466	Houston	KGHW 2.414	KNGB 2.490 KNGU 2.414	VENEZUELA (YVA-YWZ)
E. Providence WPEI 1.712 Pawtucket	1	Lµbbock KGZW 2.458	KNFX 2.490 Ephrata	WEST VIRGINIA	Barquisimete YV8RB 5,895
WPFV 2.466 Providence	Austin	San Antonio KGZE 2.482 Waco	KNGZ 2.490 Everett KNFP 2.414	Charleston WPHI 2.490 Clarksburg	Bolivar YV11RB 6.545
WPGF 1.712 Woonsocket WPEM 2.466	KGHU 2.442 Beaumont	Wichita Falis	Kalaloch KACQ 2,490 Mt. Vernon	WPFP 2.490 Fairmont WPHJ 2.490	Caracas YV2RC 5.800 YV3RC 6.165
SOUTH	Big Spring KACM 2.458	UTAH	KNFI 2.414 Olympia KACE 2.414	Parkersburg WPHQ 2,490	YV4RC 6.375 YV9RC 6.400
CAROLINA Charieston WCPD 2.430	Brownsville KGHT 2.382 Brownwood	Sait Lake City KGPW 2.406 VIRGINIA	KACE 2.414 KNFG 2.490 Seattle KGPA 2.414	WISCONSIN	Maracaibo YV5RMO 5.850 YV7RMO 5.810
SOUTH DAKOTA	Cleburne KNGE 1.712	Lynchburg WQFH 2.450	WVD 2.604 WVD 8.620 Spokane	Green Bay KNHB 2.382 Kenosha	Maracay YVQ 6.672 YVR 9.168
Huron	Corpus Christi KGHV 2.382 Dailas	Petersburg WQFI 2.450 Richmond	KGHS 2.414 KNGR 2.490	WPEP 2.450 Milwaukee	YV12RM 6.300 San Cristobai
Rapid City	KVP 1.712 Denton	WPHF 2.450	Vancouver	WPDK 2.450 Oshkosh	YV10RSC 5.720 Valencia
KNGM 2.450	KNHF 1.712	WQFG 2.450	KNGC 2.490	WAKE 2.382	YV6RV 6,520

Meeting the Artists

(Continued from page 35)

title role. Buckley has been featured in nearly every form of entertainment since he started at Hammerstein's Victoria Theater at the turn of the century. He sang bass in the musical comedy "Flora Dora"; had his own drama company in Chicago; formed an independent movie production company with B. A. Rolfe, who later became a noted band leader; played mystery characters for the silent movies and appeared with Houdini. He has been in radio since 1930, playing all kinds of roles.

Olive Oyl is portrayed by Olive La Moy, a diminutive blond who makes her home in Hartford, Conn.

Victor Erwin and his arranger. Ernie Watson, create all the musical effects to describe Popeye's muscleraising, his gurgling; the sound of a woman falling from an 83-story building and other such incidents of the dramatizations. He directed the music for "Betty Boop" pictures and "Three Little Pigs." For his radio programs, he memorizes the score and then directs from the script.

What About Speaker?

(Continued from page 11)

within an improperly designed cabinet. In such cases there is little that can be done to alleviate this fault. A good movement of air behind the speaker sometimes helps, and no radio cabinet should be placed close to the wall. Take care to reduce all vibrations in the sides of the cabinet and chassis by strengthening the parts or using rubber cushions wherever practicable.

	1						1					WD50	0.466
CB615	6.150				1.682			KNGF	2.422	VK3ME		WPEC WPED	2.466
CB960	9.600		15.310	KACD	1.682	KGZM	2.414	KNGG	1.698	VK6ME VLK	9.590 8.095	WPEE	1.712 2.450
CEC		HAS3	15.370	KACE	2.414	KGZN	2.414	KNGJ KNGK	2.490	VLZ	7.960	WPEF	2.450
CEC CFCX	10.670	HAT2	5.400 7.220	KACI	2.450 2.422	KGZO KGZP	2.414	KNGL	2.450 1.712	VPD	13.075	WPEG	2.450
CFRX		HAT3	8.565	KACJ	2.414	KGZQ	1.712	KNGM	2.450	VQG	19.630	WPEH	1.712
CFU		HAT4	9.125	KACK	2.414	KGZR	2.442	KNGN	2.490	VRR4	11.595	WPEI	1.712
CGZ	2.342		9.595	KACL	2.450	KGZT	1.674	KNGP	2.430	VWY	9.045	WPEJ	1.712
CHNX	6.110	HBP	7.797	KACM	2.458	KGZU	2.490	KNGQ	2.490		17.480	WPEK	2.430
CJCX	6.010	НСЈВ	8.900	KACN	2.414	KGZV	2.414	KNGR	2.490	VWZ	8.690	WPEL	1.666
CJRO	6.150	нск	5.885	KACO	2.414	KGZW	2.458	KNGT	2.450	VYR	1.712	WPEM	2.466
CJRX	11.720	HC2ET	4.600	KACP	2.450	KGZX	2.414	KNGU	2.414	VYW	2.396	WPEP	2.450
CJW	2.390	HC2JSB		KACQ	2.490	KGZY	1.712	KNGV	2.422	WAKA	2.490	WPES	2.442
CJZ	2.390	HC2RL	6.650	KACR	2.450	KHV	2.566	KNGW	2.458	WAKB	2.466	WPET	1.706
COCD	6.130	HH2S	5.915	KACS	2.414	KHW	2.912	KNGY	2.414	WAKC	2.366	WPEV	1.666
COCH	9.428	HH3W	9.617	KACU	1.712	KHZ	2.912	KNGZ	2.490	WAKE	2.382	WPEW	1.666
COCO	6.010	HIG	6.280	KACV	2.414	KIAP	3.093	KNHB	2.382	WAKF	1.712	WPFA	1.712
COCQ	9.755	HIH -	6.814	KAEB	2.616	KIAW	3.093	KNHC	2.450	WAKG	2.466	WPFC	2.442
COKG	6.155	HH	10.040	KAED	2.616	KIAY	3.093	KNHD	1.658	WAKH	2.430	WPFD	2.430
COL2	1.712	HIL	6.500	KAEF	2.616	KIBA	3.093	KNHE	2.406	WAKI	2.474	WPFE	2.442
COSIQ	8.665	HIT	6.630	KAZ	9.990	KIBZ	3.265	KNHF	1.712	WAKJ	1.698	WPFG	2.442
COSWR		HIX	5.980	KDH	2.538	KICE	3.265	KNHG	2.430	WAKK	2.490	WPFH	2.414
CQN	9.700	HIZ	6.315	KEJ	9.010	KICG	3.265	KNHM	2.442	WAKO	2.442	WPFI	2.414
CRCX	6.090	HI1A	6.185	KEL	6.860	KICI	3.093	KSW	1.658	WANB	2.726	WPFK	2.430
CSL	6.150	HIIJ	5.865	KES	9.480	KIDE	3.265	KVP	1.712	WCK	2.414	WPFM	2.382
CT1AA	9.650	HIIS	6.420	KFF	2.566	KIEJ	2.994	KWO	15.415	WCPD	2.430 13.410	WPFN WPFO	1.712 2.474
CYQ	2.318	H13C	6.098	KGHE		KIIJ	3.190		15.355	WCT	10.610	WPFP	2.490
CZG	2.416	HI3U	6.014	KGHC		KIIK	2.994		9.540	WEA WES	9.448	WPFQ	2.474
CZ6F	1.710	HI4D	6.500	KGH		KIIK	3.190	LKJ1		WET	9.470	WPFS	2.458
DJA	9.560	HI4V	6.480	KGH		KIIL	2.994 2.994		9.600 15.250	WEZ	8.075	WPFS	2.474
DIB	15.200	HISN	6.150	KGH		KIIM	2.994		9.660	WKDU	1.706	WPFT	2.442
DIC	6.020	H19B	6.045	KGH		KIIO	2.994		10.250	WKF	4.253	WPFU	2.422
DID	11.770 17.760	MLH PLH	5.950	KGHS		KIIP	3.100	LSN	9.895	WKJ	9.460	WPFV	2.466
DIW	6.080		7.465 9.510	KGHI		KIJB	2.994		19.650	WLA	18.350	WPFW	2.466
NIG	9.540	HJ1ABI		KGHU		KIJI	1.622		14,970	WMDZ		WPFX	2.442
OTO	11.795			KGH		KIJK	1.622		5.780	WMJ	2.422	WPFY	2.442
DJP	11.855			KGH		KIJO	1.622		6.230	WMN	14.590	WPFZ	2.442
DJR	15.340			KGH		KIJP	2.986		18.670	WMO	2.414	WPGA	2.466
DZA	9.675					KIJR	2.986		10.135	WMP	1.666	WPGB	2.466
DZB	10.042			KGHZ		KIJS	1.622		10.330	WNC	15.055	WPGC	1.658
DZC	10.285			KGJX		KIJU	2.986		9.490	WND	4.098	WPGD	2.458
DZE	12.130	HJ1AB		KGM	2.512	KIJV	1.622		9.590	WNFP	2.422	WPGF	1.712
DZG	15.360	HJ2AB		KG02		KIJW	2.632		15.220	WOA	6.755	WPGG	1.596
EAQ	9.862			KGPA		KIJX	2.632	PHI	17.775	WON	9.870	WPGH	2.414
FO8AA	7.100			KGPE		KILD	2.538	PLE	18.830	WOO	4.178	WPGI	2.430
GAA	20.380					KILY	2.994	PLV	9.415	WOO	4.753	WPGJ	2.414
GAD	19,480				2.466	KIMA	2.632	PMN	10.260	WOO	8.560	WPGK	2.466
GAQ	18.970			KGPE	2.422	KIOC	2.632	PRADO		WOO	12.840	WPGL	2.442
GAS	18.310	HJ4AB	C 6.450	KGPF	2.414	KIOD	2.632		9.500	WOO	17.120	WPGM	2.414
GAU	18.620	HJ4ABI	D 5.760	KGPG	2.422	KIOG	1.622		10.220	WOU	2.506	WPGN	2.490
GBA2	13.990	HJ4ABI	E 5.930			KIOH	2.632		10.160	WPDA	2.414	WPGO	2.490
GBB	13.585	HJ4ABI	L 6.100	KGPI		KIOI	2.632		15.040	WPDB	1.712	WPGP	2.442
GBC	8.680	HJ4AB	P 6.135			KION	2.616		12.000	WPDC	1.712 1.712	WPGQ	1.596
GBC	17.080					KKH	7.520		4.273	WPDD	2.442	WPGS	2.490 2.482
GBU	12.290						2.566		10.055	WPDF	2.442	WPGV	1.712
GBW	14.440		7.090			KLB	2.512		5.830 12.225	WPDG	2.458	WPGW	2.382
GBX	16.140		10.290				2.512		5.710	WPDH	2.442	WPGX	2.466
GCB	9.280		6.030				2.566 2.512		6.000	WPDI	2.430	WPGZ	2.474
GCP	10.770		6.080				2.994		6.130	WPDJ	2.414	WPHA	2.466
GCS	9.020 9.950		9.590	KGPE		KNFA	2.594		9.450	WPDK	2.450	WPHB	2.422
GDP		HP5K HRD		KGPS		KNFB		TG2X	5.940	WPDL	2.442	WPHC	1.596
GDS		HRN		KGPY		KNFE		TIEP	6.700	WPDM			2.458
GDS		HRP1		KGP		KNFG		TIGPH		WPDN	2.382		1.634
GSA	6.050	HS8PJ				KNFH		TIPG	6.410		2.458		2.450
GSB		HVJ		KGX		KNFI		TIRCC	6.550	WPDP	2.474		1.712
GSC .		IDU		KGX		KNFJ		TISHH	5.520	WPDR	2.422		2.490
GSD		12RO		KGZ	2.414	KNFK	2.490	TPA2	15.245	WPDS	2.430		2.490
GSE		12RO		KGZ		KNFM		TPA3	11.880	WPDT	2.490		1.596
GSF	15.140		5.890	KGZ	2.422	KNFN	1.682	TPA4	11.715		1.712		2.442
GSG		JVM		KGZ	2.490	KNFO	1.682	TYD2	8.575	WPDV	2.458		2.466
GSH	21.470	NAT	10.660	KGZI	2.482	KNFP		VDO	4.865	WPDW			2.430
GSI	15.260	TVL		KGZI		KNFX		VE9BK			2.414		2.466
GSJ	21.530	וואען		KGZ		KNGB		VE9EW		WPDY	2.414	WPHQ	2.490
GSK		100		KGZ		KNGC		VJZ	13.880	WPDZ	2.490		1.634
GSL		JZG		KGZI		KNGD		VK2ME		WPEA	2.382		1.596
GSN	11.820	KACA	2.422	KGZJ	2.430	KNGE	1.712	VK3LR	9.580	WPEB	2.442	WPHU	1.634
						1							
				1								1	

The New B. C. Season

(Continued from page 26)

our minds as to the advisability of printing the requests of readers who desire correspondents. Too often, we hear from listeners who have taken the trouble to answer these requests and have never had the courtesy of a reply. Perhaps those who asked for letters got so many that it was impossible to answer them all. At best, that is the most lemient way of looking at the problem.

At any rate, the following readers have asked for correspondents and have promised faithfully to answer all letters:

Evan S. Morrow, 2161 Ashland Ave., Detroit, Mich.

Robert Patterson, 2119 Kenwood Blvd., Roanoke, Va., wants to hear from Philco owners.

Julian Schaefer, 2036 West 83rd St., Cleveland, Ohio, wants to hear from Canadian listeners.

Jack Horner, N. Market St., Elizabethtown, Pa.

We agree that pen pals get a great deal out of DXing and we are only too glad to provide a medium for making new friendships. However, if we receive any more complaints that letters are not answered, we will be obliged to stop the publishing of such requests.

Why I Verify

(Continued from page 40)

musical selections, I sent a report to the station and requested a verification. In due time, I received the station verification card, but they were very careful to stamp across the face of it in ½-inch blue letters: NOT VERIFIED. Also a message penned in red ink: "We regret cannot confirm without detail of items heard."

Later, I heard ZBW again and this time was fortunate to identify titles of four different selections. Now I have another card from the station, on the face of which is stamped in large blue letters: VERIFIED. I appreciate both of these cards and have a lot more respect for ZBW than I would have for a station like WJBK.

Another interesting angle on obtaining verifications is the friendly competitive spirit existing among individual DXers of organized clubs. Of course, each member strives to build up the best possible verified log.

Yes, I believe I shall continue my interesting hobby of collecting verifications. As I review my files, I do so with a feeling of satisfaction that I have actually heard each station represented there.

*545 Baker St., Lansing, Mich.

NORTH AMERICAN B. C. S	TATIONS	DI I'I	QUENCIE	
540 kcys. (555.2)	Heard	Logged	Reported	Verified
CJRM ak 1000 F Moose Jaw, Sask.				
550 kcys. (545.1)				
GFNB ak 500 F (1) Fredericton, N. B. KFUO ae 500 2 (1) St. Louis, Mo. KFYR ae 1000 N (5) Bismarck, N. D. KOAC ak 1000 Corvallis, Ore. KSD ak 1000 CR (5) St. Louis, Mo. KTSA ak 1000 C (5) San Antonio, Tex. WDEV ae 500 D Waterbury, Vt. WGR ck 1000 C Buffalo, N. Y. WKRC ak 1000 CX Cincinnati, Ohio WSVA ak 500 D Harrisonburg, Va.				
560 kcys. (535.4)				
KFDM ak 500 (1) Beaumont, Tex. KLZ ae 1000 CX Denver, Colo. KSFO ak 1000 San Francisco. Cal. KWTO ak 5000 D Springfield, Mo. WFIL ak 1000 B Philadelphia, Pa. WIND ak 1000 (5) Gary, Ind. WIS ae 1000 N (5) Columbia, S. C. WOAM ae 1000 C Miami, Fla. XEAO ak 250 (.15) Mexicali, L. C. XEFC ak 100 Merida, Yuc.				
570 kcys. (526.0)				
KGK() ak 250 C (1) Wichita Falls, Tex. KMTR ak 1000 Hollywood, Calif. KVI ak 1000 C Tacoma. Wash. WKBN ae 500 IC Youngstown, Ohio WMCA ak 500 X New York, N. Y WNAX ak 1000 C (5) Yankton, S. D. WOSU ak 750 I (1) Columbus, Ohio WSYR ak 250 BX Syracuse, N. Y. WWNC ak 1000 N Asheville, N. C.	·			
580 keys. (516.9)				
CFPR z 50 Prince Rupert, B.C. CHRC ak 100 F Quebec, Que. CJGX ae 100 F Yorkton, Sask. CKCL ae 100 F Toronto, Ont. CKUA ak 500 Edmonton, Alta. KMJ ak 1000 C Fresno, Calif. KSAC ak 500 2(1) Manhattan, Kans. WCHS ak 500 (1) Charleston, W. Va. WDBO ae 1000 C Orlando, Fla. WIBW ak 1000 C2 (5) Topeka, Kans. WILL ak 1000 D Urbana, Ill. WTAG ae 500 RX Worcester, Mass				
590 keys. (508.2)				
KHO ak 1000 R (2.5)Spokane, Wash. WEEI ak 1000 RX Boston, Mass. WKZO ae 1000 D Kalamazoo, Mich. WOW ae 5000 R (5) Omaha, Nebr. XEPN ak 50000 Piedras Negras, Coah.				
600 kcys. (499.7)				
CFCF ae 400 FN Montreal, Que. CJOR ak 500 Vancouver, B. C. CMW ak 1400 Havana, Cuba CRCW ak 500 F (1) Windsor, Ont. FQN z 250 609 St. Pierre, Miq.				

HORITI	AMERICAN B. C. S	TATIONS	BY FRE	QUENCIE	S
WMT ak 1000	B San Diego, Calif. C (1) Baltimore, Md. C (1) Bridgeport, Conn. B (2.5) Cedar Rapids, Ia. C (2.5) Memphis, Tenn.	Heard	Logged	Reported	
610 kcys. (4	91.5)				
WIP ae 1000	C (5) San Francisco, Cal. R (5) Kansas City, Mo. X Philadelphia, Pa. D Cleveland, Ohio Mexico City, D. F Mexico City, D. F.				
620 kcys. (4	83.6)				
WFLA ae 1000 WFLA ae 1000 WIJB ak 250 WLBZ ak 500 WSUN ae 1000	R (5) Portland, Ore. N Phoenix, Ariz. Na (5) Clearwater, Fla. D Greensburg, Pa. C (1) Bangor, Maine Na (5) St. Petersburg, Fla. N (5) Milwaukee, Wis.				į
630 kcys. (4	75.9)			1	, i
CFCY ae 1000 I CJRC ak 1000 I CKOV ak 100 I KFRU ak 500 I KGFX ak 200 I WGBF ak 500 I WMAL ak 250 I WOS ak 500 I	, 3. 2.				•
640 kcys. (40	58.5)				
CMBC dj 150 . KFI ah 50000 F WHKC ae 500 . WOI ae 5000 E WSPG z 500 F XEOX ak 500 .	Columbus, Ohio Ames, Iowa				
650 kcys. (40	51.3)				
TIGPH ak 1000 . WSM ae 50000 N	San Jose, C. R. Nashville, Tenn.				
660 kcys. (48	54.3)				
WAAW ak 500 D WEAF ak 50000 R	Omaha, Neb.				
670 kcys. (44					
WMAQ ak 50000 N	·				
680 kcys. (44	10.9)				
KFEQ ak 2500 D KPO ak 50000 R RDN z 500 C VAS akn 2000 68 VOWR ck 500 68	San Francisco, Cal. San Salvador, E. S. Glace Bay, N. S.				

NORTH AMERICAN B. C. S	TATIONS	DI IKI	QUENCIE	3
690 kcys. (434.5)	Heard	Logged	Reported	Verified
CFRB ak 10000 C Toronto, Ont. CJCJ aj 100 F Calgary, Alta. NAA akn 1000 Arlington, Va. XET ak 500 Monterrey, N. L.	ļ			
700 kcys. (428.3)	·			
WLW ak 500000 N Cincinnati, Ohio			,	
710 kcys. (422.3)				1
KIRO ae 1000 Seattle, Wash. KMPC ak 500 Beverly Hills, Cal. WOR ak 50000 Newark, N. J. XEN ak 1000 Mexico City, D. F.				<u></u>
720 kcys. (416.4)				
WGN ak 50000 Chicago, Ill.				
730 kcys. (410.7)				
CFPL ak 100 F London, Ont. CJCA ah 1000 F Edmonton, Alta. CKAC ck 5000 C Montreal, Que. CKPR ak 100 F Fort William, Ont. CMK ae 3000 Havana, Cuba XEBC z 5000 Agua Caliente, L.C.				
740 kcys. (405.2)				
KMMJ ae 1000 D Clay Center, Neb. KTRB ak 250 D Modesto, Calif. WHEB ak 250 D Portsmouth, N. H. WSB ah 50000 N Atlanta, Ga.				
750 kcys. (399.8)				
CMCW dk 150 Havana, Cuba KGU aj 2500 N Honolulu, T. H. WJR ak 50000 C Detroit, Mich. XEAM z 7.5 Matamoros, Tams.				
760 kcys. (394.5)				
CMHX ak 200 Cienfuegos, Cuba KXA ae 250 (.5) Seattle, Wash. WBAL ae 2500 BSy Baltimore, Md. WEW ae 1000 D St. Louis, Mo. WJZ ak 50000 BSy New York, N. Y. XEOK ak 250 Tijuana, L. G.				
770 kcys. (389.4)				
CMBS ak 150 Havana, Cuba KFAB ae 10000 CSy Lincoln, Neb. WBBM ae 50000 CSy Chicago, Ill.				
780 kcys. (384.4)				
CHWK dk 100 F Chilliwack, B. C. CKSO ak 1000 F Sudbury, Ont. CMJK ak 250 Camaguey, Cuba KEHE ak 500 (1) X Los Angeles, Calif. KFDY ae 1000 D Brookings, S. D. KFQD ck 250 Anchorage, Alaska KGHL ak 1000 N (2.5) Billings, Mont. WEAN ae 500 CX Providence, R. I.				

NORTH AMERICAN B. C. STATIONS BY FREQUENCIES

TOTAL AND EXICAN B. C.	STATIONS	BY FR	EQUENCIE	S
WMC ak 1000 N (5.) Memphis, Tenn. WTAR ae 500 NX (1) Norfolk, Va. XEYZ z 10000 Mexico City, D. F.	Heard	Logged		
790 kcys. (379.5)		,		
CMGH z 250 Matanzas, Cuba KGO ak 7500 B San Francisco, Cal WGY ak 50000 R Schenectady, N. Y.	· •			
800 kcys. (374.8)				
HIX ak 700 Trujillo, D. R. TIX ak San Jose, C. R. WBAP ak 50000 Na Fort Worth, Tex. WFAA ak 50000 Na Dallas, Tex. WTBO ak 250 D Cumberland, Md.				
810 kcys. (370.2)				
CMCF ak 600 Havana, Cuba WCCO ae 50000 C Minneapolis, Minn. WNYC ak 1000 D New York, N. Y. XFC z 350 Aguascalientes, Ags.				
820 kcys. (365.6)				
CMHW ak 100 Clenfuegos, Cuba WHAS aj 50000 C Louisville, Ky. XEMZ z Coronado Isle, L. C.				
830 kcys. (361.2)				
CMJX z Camaguey, Cuba KOA ak 50000 N Denver, Colo. WEEU ak 1000 D Reading, Pa. WHDH ae 1000 Dn Boston, Mass. WRUF ae 5000 Dn Gainesville, Fla.				
840 kcys. (356.9)			ŀ	
CFQC ak 1000 F Saskatoon, Sask. CRCT ak 5000 FN Toronto, Ont. VOGY ak 400 St. John's, Nfld. XERA ck 250000 Villa Acuna, Coah.				
850 kcys. (352.7)				
CMBN z 150 Havana, Cuba KIEV ak 250 D Glendale, Calif. TIEP z 500 San Jose, C. R. WESG ak 1000 C Elmira, N. Y. WKAR ae 1000 D East Lansing, Mich. WWL ae 10000 C New Orleans, La.				
860 kcys. (348.6)	Ì	.		
WABC ak 50000 C New York, N. Y. WHB ak 1000 D Kansas City, Mo. XEMO ak 5000 Tijuana, L. C.				
870 kcys. (344.6)				
WENR ak 50000 Na Chicago, III. WLS ae 50000 Na Chicago, III.				
880 kcys. (340.7)				
CFJC ak 100 F Kamloops, B. C. CMQ ak 500 Havana, Cuba CRCO ak 1000 F Ottawa, Ont.				

NORTH AMERICAN B. C. S	TATIONS	BI FRE	QUENCIE	
KFKA ak 500 2 (1) Greeley, Colo. KLX ae 1000 Oakland, Calif. KPOF ae 500 2 Denver, Colo. WCOC ae 500 (1) Meridian, Miss. WGBI ae 500 1 Scranton, Pa. WPHR ak 500 D Petersburg, Va. WQAN ae 250 1 Scranton, Pa. WSUI ae 500 (1) Iowa City, Iowa	Heard	Logged	Reported	Verified
890 kcys. (336.9)				
KARK ak 250 (.5)X Little Rock. Ark. KFNF ak 500 2 (1) Shenandoah, Iowa KFPY ak 1000 C (5) Spokane, Wash. KUSD ae 500 2 Vermillion, S. D. WBAA ak 500 (1) W. Lafayette, Ind. WGST ak 1000 C Atlanta, Ga. WJAR ae 1000 R Providence, R. I. WMMN ak 250 C (.5) Fairmont, W. Va. XEW ak 50000 Mexico City, D. F.				
900 keys. (333.1)				
KGBU ak 500 X Ketchikan, Alaska KHJ ae 1000 C (5) Los Angeles, Calif. KSEI ck 250 (.5) Pocatello, Idaho WBEN ak 1000 R (5) Buffalo, N. Y. WELI z 500 D New Haven, Conn. WFMD ah 500 D Frederick, Md. WJAX aeh 1000 N (5) Jacksonville, Fla. WKY ae 1000 N Oklahoma City. Okla. WLBL ak 2500 D Stevens Point. Wis. WTAD ak 500 D Quincy, Ill.				
910 kcys. (329.6)				
CJAT ak 1000 F Trail, B. C. CKY ak 15000 F Winnipeg, Man. CRCM ak 5000 F Montreal, Que. XENT ak 150000 Nuevo Laredo, Tams.				
920 kcys. (325.9)				<u> </u>
CMX ae 1000 Havana, Cuba HHK ae 1000 Port-au-Prince, Haiti KFEL ak 500 a Denver, Colo. KOMO ak 1000 R (5) Seattle, Wash. KPRC ak 1000 N (5) Houston, Texas KVOD ak 500 a Denver, Colo. WAAF ak 1000 D Chicago, Ill. WORL ae 500 D Boston, Mass. WPEN ak 250 (.5) 1 Philadelphia, Pa. WRAX ak 250 I (.5) Philadelphia, Pa. WSPA ae 1000 D Spartanburg, S. C. WWJ ak 1000 R (5) Detroit, Mich. XEAA ak 200 Mexicali, L. C.				
930 kcys. (322.4)				
CFAC ak 100 F Calgary, Alta. CFCH ak 100 F North Bay, Ont. CFLC ae 100 Prescott, Ont. CHNS ae 1000 F Halifax, N. S. CKPC ae 100 F Brantford, Ont. KMA ak 1000 (2.5) Shenandoah, Iowa KROW ak 1000 Oakland, Calif. TIRH z 50 San Jose, C. R. WBRC ak 1000 C Birmingham, Ala. WDBJ ae 1000 C(5) Roanoke, Va. XEBH z 500 Hermosillo, Sonora				

		DI III	QUENCIE	3
940 keys. (319.0)	Heard	Logged	Reported	Verified
KOIN ak 1000 C (5) Portland, Ore, VOAS ak 100 St, John's, Nfld, WAAT ae 500 D Jersey City, N. J. WAVE bk 1000 N Louisville, Ky. WCSH ae 1000 R (2.5) Portland, Maine WDAY ae 1000 N (5) Fargo, N. D. WHA ak 2500 DX Madison, Wis. XEFO ak 5000 (XFO) Mexico City, D. F.	,			
950 keys. (315.6)				
CJOC ak 100 F Lethbridge, Alta. CMCD ak 250 Havana, Cuba CRCS ak 100 F Chicoutimi, Que. KFWB ak 1000 (5) Hollywood, Calif. KHSL ak 250 D Chico, Calif. KMBC ae 1000 C(5) Kansas City, Mo. WRC ak 500 R (1) Washington, D. C. YNVA z 30 Managua, Nic.				
960 kcys. (312.3)				
CHNC ak 1000 F New Carlisle, Que. XEAW ck 50000 Reynosa, Tams.				
970 kcys. (309.1)				
CMBY z 150 Havana, Cuba KJR ak 5000 B Seattle, Wash. WCFL ae 5000 B Chicago, Ill. WIBG ak 100 D Glenside, Pa.				
980 kcys. (306.0)				
KDKA ae 50000 B Pittsburgh, Pa. XEF z 100 Juarez, Chih.				
990 kcys. (302.8)				
WBZ ak 50000 BSy Boston, Mass. WBZA ak 1000 BSy Springfield, Mass. XEAF ak 500 Nogales, Sonora XEK ak 100 Mexico City, D. F. XES dk 250 Tampico, Tams.				
1000 kcys. (299.8)				
CMBZ ak 150 Havana, Cuba KFVD ak 250 Dn Los Angeles, Calif. TIGH z 500 San Jose, C. R. WHO ak 50000 R Des Moines, Iowa XEBK z 100 Nuevo Laredo, Tams. XEY z 10 Merida, Yuc.				·
1010 kcys. (296.9)				
CHML ak 100 F Hamilton, Ont. CHWC ak 500 3F Regina, Sask. CKCD ak 100 Vancouver, B. C. CKCK ak 500 3F Regina, Sask. CKCO ak 100 F Ottawa, Ont. CKIC ak 50 Wolfville, N. S. CKWX ak 100 F Vancouver, B. C. CMJA ak 50 Camaguey, Cuba KGGF ak 1000 2 Coffeyville, Kans. KOW ak 1000 San Jose, Calif. TIGA z 30 1014 Cartago, C. R. WHN ae 1000 (5) New York, N. Y. WNAD ae 1000 2 Norman, Okla. WNOX ak 1000 C (2) Knoxville, Tenn. XEU ak 250 Veracruz, Ver.				,

1020	kcys.	(293	.9)			Heard	Logged	Reported	Verified
K Y W WDZ XPJ	ak 10000 ak 250 ak 1000	R D	Philad	lelphia. la III z, Chih	Pa				
1030	kcys.	(291	.1)						1
GFGN GKLW GMGY XEB	nk 10000 ng 5000 nk 1000 nk 10000		Wind	ry, Alta nor, Ont na, Cubs o City,	а				
1040	kcys.	(288	.3)						
KRLD KWJJ KYOS WUG	ne 10000 ak 500 7 250 ah 50000	DP	Portl: Merce	a, Lexaa and, Ore ed, Calif ord, Col	•	!			1
1050	kcys.	(285	.5)						
CMKD CRCK KPBI KNX TIFA	ak 250 ak 1000 ak 5000 ak 5000)	Queb Abile Holly	lago, Cu lec. Que ne, Kan wood, C Jose, C	n. alif			1	
1060	kcys.	(282	(8.						
KIHS VOAC WBAI WJAG XFA	ne 1000 / 4/ nk 1000 nk 1000 nk 100	0 1065 0 B	St J Balti Norfe	Springs. John's. more. M Jik. Neb Jalajara.	NAd. Id.				
1070	kcys.	(280	1.2)						
CMBX CMHA KJBS WGAZ WTAM	ak 40 , 5 ak 50 ak 10 ak 5000	0 0 1>n 0 1>	Sagu San Cart	na. Cub a la Grad Francisc hage, Ill sland, O	nde, C. o, Cal :				
1080	kcys.	(277	7.6)						
WBT WCBD WMM	ak 5000 ak 500 ak 500	0 11)n	Wau	lotte, N kegan, I ago, III.					
1090	kcys.	(27	5.1)						
KMOX XEAQ	nk 5000 nk 100	0 C	St. L Ross	ouis, Morito, L.	o. C.				
1100	kcys	(27)	2.6)						
CROV RGDM KWKI WLWI WPG XEL	i ne 1000	0 D 0 C 0 1 0 1C	Stoc Shre New Atla	couver, I kton, Goveport, York, N ntic City, ico City,	alif. La. i. Y. v. N. J.				
1110	kcys	. (27	0.1)						
CMCJ KSOO WRVA XELO		00 I)n	Slou Rich	ana, Cut x Falls, imond, ras Negr	S. D. Va.				

- Invident B. C. S	TATIONS	BI FRI	EQUENCIE.	S
1120 keys. (267.7)	Heard	Logged	Reported	
CHLP ak 100 F Montreal, Que, CHSJ ae 500 F (1) St. John, N. B. CKOC ae 500 F (1) Hamilton, Ont, CKGK ak 100 F Brandon, Man. CMKM ak 100 F Brandon, Man. Manzanillo, Cuba 100 D Spokane, Wash. KFSG ag 500 a (2.5) Los Angeles, Calif. KRSC ak 100 DX Seattle, Wash. WCOP ak 500 D Boston, Mass. WDEL ak 250 (.5) Wilmington, Del. WTAW ae 500 College Station, Tex.			-	
1130 keys. (265.3)				
CMJI ak 50 Ciego de Avila, Cuba KSL ae 50000 C Salt Lake City, Utah WJJD ak 20000 Dn Chicago, III. WOV ag 1000 D New York, N. Y.				
1140 kcys. (263.0)				
CMBG z 200 Havana, Cuba KVOO ak 25000 iN Tulsa, Okla. WAPI ae 5000 iN Birmingham, Ala. WSPR z 500 Springfield, Mass.				
1150 kcys. (260.7)				
CMJF z 200 Camaguey, Cuba WHAM ae 50000 B Rochester, N. Y. XED ak 2500 1155 Guadalajara, Jal. XEFL ak 250 Tijuana, L. G. XEWZ ak 100 Monterrey, N. L. Mexico City, D. F.				
1160 kcys. (258.5)				
CMHJ z 100 Clenfuegos, Cuba WOWO ae 10000 1C Fort Wayne, Ind. WWVA ak 5000 1C Wheeling, W. Va. XEAS z 100 Saltillo, Coah, XEC z 30 Tijuana, L. C. XEP ak 500 Juarez, Chih. XESL z Tijuana, L. C.				
1170 kcys. (256.3)				
CMBD z 150 Havana, Cuba WCAU ae 50000 C Philadelphia, Pa.				
1180 keys. (254.1)				
CMJO ak 50 Clego de Avila, Cuba KEX ak 5000 2B Portland, Ore. Albuquerque, N.M. WE9EK ak 10 1185 Montmagny, Que. WINS ak 1000 Dn (5) Minneapolis, Minn WMAZ ak 1000 New York, N. Y. WMAZ ak 1000 Macon, Ga. XEFA z 500 Mexico City, D. F.				
1190 kcys. (252.0)				
HIJ z 15 1195 Trujillo, D. R. VONF ak 500 1195 St. John's, Nfld. WATR ak 100 D Waterbury, Conn.				

WOAI WSAZ	ak ak	50000 1000	N		Antonio, Tex. tington, W. Va.	Heard	Logged	Reported	Verified
1200	k	eys.	(249	.9)					
СНАВ	ak	100	F		se Jaw, Sask.				!
CKNX CKTB	ak ae	50 100	F	St. C	gham, Ont. atherines, Ont.				
CMCO KADA	ak ak	150 100	$\dot{\mathbf{p}}$		ana, Cuba , Okla.				
KBTM	ak	100	D	Jone	esboro, Ark. Istown, Mont.				
KDNC KFJB	z ak	100 100		Mars	halltown, Iowa				
KFXD KFXJ	ae ak	100 100	(.25)		npa, Idaho nd Junc., Colo.				1
KGDE	ak	100	(.25)	Ferg	us Falls, Minn.				
KGEK KGFJ	ak ae	100 100			ling, Colo. Angeles, Calif.		ĺ		
KGHI KMLB	ak ak	100 100	(.25)		le Rock, Ark. iroe, La.				
KSUN	ak	100	<u>.</u>	Low	ell, Ariz.				
KVCV KVEC	z z	100 250			ding, Calif. uis Obispo, Cal.		İ		
KVOS	dk	100			ingham, Wash. kton, Calif.				
KWG Wabi	ak ak	100) <u></u>	Ban	gor, Maine				
WAIM WAYX	ak z	. 100 100			lerson, S. C. /cross, Ga.				
WBBZ	ak	100			ca City, Okla. Orleans, La.				
WBNO WCAT	ak ak			Rap	id City, S. D.				
WCAX WCLO	ak ak				lington, Vt. esville, Wis.		1		
WCPO	ak	100	(.25)	Cin	cinnati, Ohio				
WEST WFAM	ae ak			Sou	ton, Pa. th Bend, Ind.				
WHBC WHBY	ak ak				iton, Ohio en Bay, Wis.				
WIBX	ae	j 100	(.3)C	: Utic	ca, N. Y.				
WIL WJBC	ak ak		6(.25)		Louis, Mo. omington, Ill.				
WJBL	ak ak			Dec	atur, Ill. v Orleans, La.				
WJBW WJNO	Z	100) P	W. I	Palm Beach, Fla.				
WJRD WKBO	z ak	100 100	DP 3 (.2		caloosa, Ala. rrisburg, Pa.		Í		
WLVA	ak	: 100	(.25)	Lyn	ichburg, Va. h Point, N. C.				
WMFR WMPC	ak	: 100	(.25)	Lap	eer, Mich.				
WNRI WOLS	ak z	: 100 100			vport, R. 1. rence, S. C.				
WRBL	ak	100	0	Col	umbus, Ga. tford, Conn.				
WTHT WWAE		100 100			mmond, Ind.				
1210	k	cys.	(24	7.8))				
CJCS	z	5		Str	atford, Ont.				
CJCU CKBI	z al	5 4 10		Akl Pri:	avik, N. W. T. nce Albert, Sask.				
CKCH	al	k 10	0 F	Hu	ll, Que.				
CKMC CMHI	al al		0	Sar	oalt, Ont. ita Clara, Cuba				
KANS KASA	z cl	10 10	0 P	Wid Elk	chita, Kans. City, Okla.				
KDLR	al	k 10	<u> </u>	Dev	vils Lake, N. D. Monte, Calif.				
KDON KFJI	z al		0	Kla	ımath Falls, Ore.				
KFOR KFPW	a			C Li	ncoln, Neb. rt Smith, Ark.				
KFVS.	al	د 10 د	0 - 6(.25)	5) Cap	e Girardeau, Mo.				
KFXM KGLO				Ma	ernardino, Calif. son City, Iowa				
KGY	al			Oly	mpia, Wash.		1		İ

NORTH AMERICAN B. C. STATIONS BY FREQUENCIES

						, DI III	QUENCIE	<u> </u>
KIUL	ak	100	`	Gordon City Vone				
KOCA	z	100		Garden City, Kans. Kilgore, Texas	Heard	Logged	Reported	Verified
KPPC	ak	100		Pasadena, Calif.			•	
KVSÖ	ak	100						
KWTN		100		Ardmore, Okla. Watertown, S. D.				Ì
TGW	ak	10000		Guatemala City				
WALR	ak	100		Zanesville, Ohio				
WABX		100		Wilkes Barre, Pa.				
WBBL	ak	100		Richmond, Va.				
WBLY	z	100		Lima, Ohio				•
WBRB		100		Red Bank, N. J.				
WCOL		100		Columbus, Ohio				
WCRW		100		Chicago, Ill.				-
WEBQ		100		Harrisburg, Ill.				
WEDČ	ae	100		Chicago, Ill.				
WFAS	ak	100		White Plains, N. Y.				
WFOY	z	100		St. Augustine, Fla.				
WGBB		100	3	Freeport, N. Y.				
WGCM		100	(.25)	Gulfport, Miss.				
WGNY		100	3	Chester, N. Y.				
WHBF	ak	100	(.25)	Rock Island, Ill.				
WHBU		100	(.25)	Anderson, Ind.				
WIBU	ak	100	(.25)	Poynette, Wis.				
WJBY	ak	100		Gadsden, Ala.				
WJEJ	ae	100	\mathbf{D}	Hagerstown, Md.				
WJIM	Z	100	(.25)	Lansing, Mich.				
WJW	ae	100	(.25)	Akron, Ohio	'			
WKOK		100	(120)	Sunbury, Pa.				
WLMU		100	P	Middlesboro, Ky.			ļ	
WMBG		100		Richmond, Va.				
WMFG		100		Hibbing, Minn.				
WMFN		100	$\dot{\mathbf{Y}}$	Clarksdale, Miss.				
WOCL	ak	50		Jamestown, N. Y.		*		
WOMT		100		Manitowoc, Wis.				
WPAX	ak	100	Ď	Thomasville, Ga.	1			
WSAY	Z	100	ĎР	Rochester, N. Y.				
WSBC	ae	100	4	Chicago, III.	1		1	
WSIX	ak	100		Springfield, Tenn.	1			
WSOC	ak	100	N(.25)	Charlotte, N. C.				
WTAX	ak	100		Springfield, 111.	Į.		J	
XEAT	Z	50		Hidalgo, Chih.			ì	
XEE	Z	50		Durango, Dgo.				
XEFV	ak	100		Juarez, Chih.	1			
XETH	ak	100		Puebla, Pue.				
				,,		İ		
					1		-	
1220	120	376	(215	8)			1	
1220	N.C	ys.	(230	.0)			i	
01/ID				_				
CMJE	Z	50		Camaguey, Cuba				
KFKU	ae	1000		Lawrence, Kans.	1			(
KTW	ak	1000		Seattle, Wash.			1	
KWSC	ae	1000		Pullman, Wash.	1			
TIVCA	ak			San Jose, C. R.	ŀ			
WCAD	ak	500	D (T)	Canton, N. Y.				
WCAE	ak	1000	K(5)	Pittsburgh, Pa.				
WDAE	ae	1000	U (2.5)	Tampa, Fla.	- 1			
WREN XETF	ak	1000		Lawrence, Kas.				
ABIT	ak	12		Veracruz, Ver.	1			
1220	1		10.10	0)				
1230	KC.	VS.	(243.	(8)				
		<i>J</i>	(1	
CMCB	ak	150		Havana Cuba	1			
KGBX	ak	500		Havana, Cuba				
KGGM	ak	250		Springfield, Mo.				
KYA	ak	1000		Albuquerque, N. M.	1		1	
WFBM	ae	1000	C(5)	n Francisco, Calif.	1			
WNAC	ak	1000		Indianapolis, Ind. Boston, Mass.		(
XEFJ	ak	100						
YNOP	z	100	i	Monterrey, N. L. Managua, Nic.				4
	-	.00	••••	managua, NIC.				
1010	1		1011	۵۱ 💳				
1240	KC	VS.	(241.	8)				
		,	\·	-/				
·CJCB	ak	1000	F 4	Sudmon N C			1	
CMHB	a K Z	50		Sydney, N. S.				
KGCU	z ak	250		ncti Spiritus, Cuba	1			
	~ D	230	1 1	Mandan, N. D.			Į.	

							
ICT DAG	-1: 350	1 Mino	+ N: D	**. 1			Manifod.
KLPM	ak 250		t, N. D.	Heard	Loggea	Reported	vermed
KTAT	ak 1000		Worth, Texas		,		
KTFI	ae 1000		Falls, Idaho Juan, P. R.				
WKAQ WXYZ	ae 1000 ak 1000		oit, Mich.	i			
XEAC	250		na, L. C.				
XEAL	400		co City, D. F.				
XEKL			Guan.				
XELA			lo, Coah.				
XEME	z 50 z 15		ia, Yuc.		i		
AEME	L 13	Meric	au, ruc.				
1250	120326	(239.9)					
1230	KCys.	(200.0)					
		- ·			1		İ
CMKC	ak 150		lago, Cuba		į		
KFOX	ae 1000		Beach, Calif.				ļ
WCAL	ah 1000		hfield, Minn.				1
WDSU	ak 1000		Orleans, La.				
WHBI	ak 1000						
WLB	ak 1000		ieapolis, Minn.		1		
WNEW WTCN	ae 1000 ak 1000		neapolis, Minn.		i		
WIGH	an 1000	2 (3) 1411111	icapono, minin				
1260	120370	(238 0)					i
1200	KCys.	(238.0)					l
CFRN	ak 100		onton, Alta.		1		
KGVO	ak 1000		oula, Mont.		1		
KOIL	ak 1000		ncil Bluffs, Ia.				
KPAC	ak 500		Arthur, Texas		1		
KRGV	ak 500		aco, Texas				
KUOA	ak 1000		tteville, Ark.		1		
KVOA	ak 500		on, Ariz.		1		
WHIO	ae 1000 ak 1000	C1	on, Ohio ngfield, Vt.				
WNBX	ae 1000		nnah, Ga.				
WIOG	ac 1000		man, our			1	
	•						
1270	Leve	(236.1)					ļ
12/0	Reys.	(200.1)					1
CMITT	11- 250	Call	anian Cuta				
CMHD	dk 250		arien, Cuba				1
KGCA KOL	ak 100 ae 1000		orah, lowa				1
KVOR	ae 1000 ae 1000		do Sp'gs, Colo.			1	
KWLC	ak 100		orah, Iowa		Į.		
WASH	ak 500		Rapids, Mich.				1
WFBR	ae 500		imore, Md.				
WJDX	ae 1000				1		l
WOOD	ak 500	aN Grand	l Rapids, Mich.			j	
XEG	z 200		enada, L. C.			1	
XFB	ak 250		pa, Ver.			1	1
YNLF	z 26) 1275 Man	agua, Nic.			1	
					1	İ	
1000	. 1	(224.2)					
1280	KCYS.	(234.2)					
	•	,					
KFBB	ae 1000)· (2.5) Grea	t Falls, Mont.				
WCAM	ae 500) 1 Cam	iden, N. J.			+	
WCAP	ae 500) 1 Asbu	ıry Park, N. J.				
WDOD			tanooga, Tenn.				
WIBA	ae 1000		ison, Wis.				
WORC			cester, Mass.		1		
WRR	ak 500		as, Texas				
WTNJ XEMX	ak 500 z 12		iton, N. J. ico City, D. F.				
. ALUMA	. 2 12	z Mexi					
	•				1		
1290	12000	(232.4)					1
1630	ncys.	(202.4)			1		
KUAI	ak 1004	NY Sale I	Lake City, Utah				1
KDYL KLCN	ak 1000 ak 100		heville, Ark.		1		1
KTRH	ak 100		ston, Texas		1		1
WEBC	ae 100		erior, Wis.				
WJAS	ak 100		sburgh, Pa.		i		
WNBZ			nac Lake, N. Y.				1
WNEL	ak 100	0 (2.5) San	Juan, P. R.		I		1

								2QUEITCIE	<u> </u>
130	0 ka	27/6	(23)	0.61		Heard	Lonnot	I T N	
100	· 1(cys.	(20	0.0)] Incurre	Logged	Reported	Verified
	_								
KALE	_	50		Port	land, Ore.				}
KFAC KFH		100			Angeles, Calif.				
KFJR	ak ag	100 50			ilta, Kans.				
WBBI		100		Brook	land, Ore. klyn, N. Y.				
WEVI		100		New	York, N. Y.				
WFAI		100		New	York, N. Y.		ĺ		
WFBC	-	100		Gree	nville, S. C.				
WHA:		50 50	n.	Troy	, N. Y.				
WIOD		100			oygan, Wis. ni, Fla.			}	
					, 1 14.				
								}	
-1310) ka	evs.	(228	3.9)					
-		50.	(,]			
CHCK		50	٠ (harlot	tetown, P.E.I			i	
CJKL	ak	1000		Kirkla	nd Lake, Ont				
CJLS CKCV	ak ak	100 100			nouth, N. S.				
KCRJ	ak	100			ec, Que.				
KFPL	dk	100		Dubl	ne, Ariz. In, Texas				
KFXR		100	(.25)	Oklaho	ma City, Okla.				
KFYO		100	(.25)	Lubb	ock, Texas	1			
KGCX KGEZ	. ak aj	100 100			olf Pt., Mont.	.			
KGFW		100			pell, Mont. ney, Neb.				
KINY	ak	100			au, Alaska				
KIT	aķ	100			na, Wash.				
KIUJ KMED	ak	100			Fe, N. Mex.				
KPDN	ck z	100 100			ord, Ore.				
KRMI		100			oa, Texas eport, La.				
KROC	Z	100			ester, Minn.				
KROY KRRV	Z	100	DP		mento, Calif.	1		•	
KTSM	z ak	100 100	DP		nan, Texas				
KVOL	ak	100			so, Texas ette, La.				
KWAT	z.	250	DP	Watso	nville, Calif.			İ	
KXRO WAML	ak ak	100		Aberd	een, Wash.				
WBEO	ae	100 100			l, Miss. uette, Mich.	1		į	
WBOW		100	(.25)	Тегге	Haute, Ind.				
WBRE	ak	100			s Barré, Pa.				
WCLS WCMI	ak z	100		Joliet,					
WDAH	āk	100 100	$\dot{\mathbf{s}}$	FI Pas	nd, Ky. 10, Texas				
WEBR	aeh	100	$\mathbf{B}(.25)$	Buffa	lo, N. Y.				
WEMP	z.	100	D `	Milwa	ukee, Wis.				
WEXL WFBG	ak ae	50			Oak, Mich.		j		
WFDF	mk	100 100	3		na, Pa. Mich.				
WGH	aj	100	(.25)	Newpo	ort News, Va.				
WHAT	ak	100	4	Philad	elphia, Pa.		1		
WJAC WLAK	ae	100			town, Pa.				
WLBC	z ak	100 100	6(,25)	Munci	ind, Fla. le, Ind.				
WLNH	ak	100		Laconi	ia, N. H.	1	1		
WMBO	ak	100	<u>.</u>	Aubur	n, N. Y.				
WMFF WNBH	ak ak	250 100			burg, N. Y.				
WOL	ak	100			edford, Mass. ngton, D. C.				
WRAW	ak	100			ng, Pa.				
WROL WSAJ	ak	100	(.25)	Knoxvi	ille, Tenn.				
WSGN	ae ak	100 100			City, Pa.			1	
WSJS	ak	100	$\mathbf{C}^{23}\mathbf{w}$	nstor-	igham, Ala. -Salem, N.C.	1			
WTAL	ak	100		Fallah:	assee, Fla.				
WTEL	ce	100	4	Philad	elphia, Pa.				
WTJS WTRC	ak ak	100 100	(.25) . $6(.25)$]	Jackso:	n, Tenn.				
XEAG	Z	10		Cordob	t, ind. oa, Ver.				
XECW	Z	10	<u>]</u>	<u>M</u> exico	City, D. F.				
XEFW	ak	250		<u> Fampl</u>	co, Tams.			1	
XETB	ak	125	1	orreor	n, Coah.	1		1	

	NORTI	AIVII	RICA	11 D. C. G.		<u> </u>	QUEL TOIL	
XEX XFA	ak 125 z 5			rrey, N. L. lientes, Ags.	Heard	Logged	Reported	Verified
1320	kcys.	(227	1) [
CMOX KGHF KGMB KID KRNT WADC WORK WSMB	ak 200 ak 500 ak 1000 ae 500 ak 500 ae 1000 ak 1000 ak 500	C (1) C(1) C(2.5)	Pueble Honold Idaho Des M Akron York,			·		
1330	kcys.	(225	.4)					
CMHK KGB KMO KSCJ WDRC WSAI WTAQ	z 250 ag 1000 ak 250 aj 1000 ae 1000 ak 1000 ae 1000	C(2.5) C(2.5) C(2.5) C(5) R(2.5)	San D Tacon Sioux Hartfo Cincil	s, Cuba lego, Calif. na, Wash. City, Iowa ord, Conn. nnati, Ohio Bay, Wis.				
1340	kcys.	(223	.7)					
CMAB CMJL HRN KGDY KGIR KGNO WCOA WFEA WSPD XEFE XFD	z 7. z 7. z 7. z 5. ak 25. ak 100 ak 25. ak 50 ae 100 z 25. z 35.	0 0 i) 0 N(2.5 0 0 C 0 C(1) 0 C(5) 0	Cama Teguc Huror Butte Dodge Pensa Mancl	del Rio, Cuba guey, Cuba igalpa, Hond. 1, S. D. , Mont. e City, Kans. cola, Fla. hester, N. H. o, Ohio Laredo, Tams. a, Ver.				
1350	kcys.	(222	.1)					
GMCA KIDO KWK WAWZ WBNX		0 (.25) 0 B(5) 0 I(1)	Boise, St. Lo Zarep	na, Cuba , Idaho puls, Mo. hath, N. J. York, N. Y.				
1360	kcys.	(220	.4)					
CMJH KGRC KGER WCSC WFBL WGES WOBC WSBT	dk 5 ak 25 ak 100 ak 50 ak 100 ae 50 ak 100 ak 50	0 0 (1)N 0 (C(5) 0 1 0 D	Enid, Long Charle Syrace Chica Vickst	le Avila, Cuba Okla. Beach, Calif. eston, S. C. use, N. Y. go, Ill. burg, Miss.				
1370	kcys.	(218	(8.8			İ		
CKCW CMGE HIZ KAST KBHB KCMO KELD KERN KFGO KFJM KFJZ KFRO KGAR	ak 10 ak 15 z 1 ak 10 z 10 ak 10 z 10 ak 10 ak 10 ak 10 ak 10 ak 10 ak 10 ac 10 ac 10	0 0 D 0 P 0 0 0 0 0 0 0 0 0 (.25) 0 X 0 D	Carde Trujil Astori Rapid Kansa El Don Baker Boone Grand Fort V Longv	ton, N. B. mas, Cuba lo, D. R. la, Ore. l. City, S. Dak. as City, Mo. rado, Ark. sfield, Calif. l. Iowa forks, N. D. Worth, Texas dew, Texas n, Ariz.				

NORTH AMERICAN B. C. STATIONS BY FREQUENCIES

				121 C. 11 B. C. 0	IATIONS	DI FRI	QUENCIE:	S
KGF0 KGFL		100	<u>.</u>	Oklahoma City, Okla	Heard	Logged	Reported	Vovifical
KGKI		100 100	(.25)	Roswell, N. M. San Angelo, Texas		segu	reported	Vermeu
KICA Kiup	ak ak	100	4	Clovis, N. M.				
KLUF		100 100	(.25)	Durango, Colo. Galveston, Texas				
KMAC		100	5	San Antonio, Tex.				
KONO KRE) ak ak	100 100	(.25)	San Antonio, Tex.				
KRKO) ak	50	ì	Everett, Wash.				
KSLM KTEM		100 100	ĎP	Salem, Ore.				
KUJ	ak	100		Temple, Texas Walla Walla, Wash.				
KVI. KWYO	ak) ak	100 100	I X	Seattle, Wash.				
WABY	aj	100		Sheridan, Wyo. Albany, N. Y.				
WAGF Watl		250 100	D	Dothan, Ala.				
WBNY	z	100	2(.25	Atlanta, Ga. Buffalo, N. Y.				
WBTM WCBM	-	100	(.25)	Danville, Va.				,
WDAS		100 100	(.25)	Baltimore, Md. Philadelphia, Pa.	-			
WDWS		100	DP	Champaign, III.				
WEOA WEXP		100 100	DP	Evansville, Ind. Clarksburg, W. Va.				7
WGL	ae	100	\mathbf{C}	Fort Wayne, Ind.				
WGRC WHBQ		250 100	DP	New Albany, Ind. Memphls, Tenn.				
WHDF	ak	100	(.25)	Calumet, Mich.				t
WHLB WIBM	z ak	100 100	P (.25)	Virginia, Minn.	ŀ		1	
WLLH	ak	100	(.25)	Jackson, Mich. Lowell, Mass.			j	
WMBR WMFD		100 100	C(.25)	Jacksonville, Fla. Wilmington, N. C.				,
WMFO	ak	100	D	Decatur, Ala.				
WMIN WOC	z ak	100 100	P C(-25)	St. Paul, Minn.			1	
WPAY	ak	100		Davenport, Iowa Portsmouth, Ohio				
WPFB WODM	ak Iae	100 100		Hattiesburg, Miss.				
WRAK	ak	100	(.25)	St. Albans, Vt. Williamsport, Pa.				
WRDO WRJN	ae ak	100 100	(35)	Augusta, Maine	-			
WSVS	ak	50	(.25) D2	Racine, Wls. Buffalo, N. Y.				
XEFZ XE1	ak	100		Mexico City, D. F.				
XEZZ	ak z	125 100	Sa	Morelia, Mich. an Luis Potosi, SLP.				
1200	1		(217	2)				
1380	KC	ys. (217	.3)		}		
CMCR	z	150		Havana Cuba				
кон	ak	500	\mathbf{C}	Havana, Cuba Reno, Nev.				
K Q V WALA	ae af	500 500	$\dot{\mathbf{C}}(1)$	Pittsburgh, Pa. Mobile, Ala.				
WKBH	ae	1000		LaCrosse, Wis.				
WNBC WSMK	mk ak	250 200	D C	New Britain, Conn.				
		200	•	Dayton, Ohio				
1200	•							
1390	Kcy	/s. (215	.7)				
CMJC	z	150		Camaduay Cuta				
нин	ak	15	1395 S	Camaguey, Cuba an Ped. de Macoris				
KLRA KOOS	ae ae	1000	$\mathbb{C}(2.5)$	Little Rock, Ark.				
KOY	ae			Marshfield, Ore. Phoenix, Ariz.				
WHK	ae			Cleveland, Ohio				
			_					
1400	kcy	/s. (214.	2)				
CMGC	z	100		Matanzas, Cuba				
CMKR	Z	100		Santiago, Cuba Hilo, T. H.				
KHBC KLO	z ak	250 500	I	Hilo, T. H. Ogden, Utah				
KTÚL	ak			Tulsa, Okla.				
						'	1	

	110	1/111	ZELVAZ	ERICHI B. C. S	171710110	, , ,		
		25.0	,	See Assess Control Control Control	** 1 ·	Lammad	Donontad	Vonified
TGX	ak	250	ż c	Guatemala City, Gt.	Heard	Logged	Reported	Vermeu
WARD	ak	500 500	$\frac{2}{2}(1)$	Brooklyn, N. Y. Brooklyn, N. Y.				1
WBBC WEGL	ae z	500	P	Brooklyn, N. Y.				•
WIRE	ak	500	R(1)					
WLTH	ak	500	2	Brooklyn, N. Y.				1
WVFW	ak	500	2	Brooklyn, N. Y.				
								1
1/10	1-0-		/212	6)				
1410	KC	ys.	(212	.6)				
CW EAT		50	_	Vancouver R C				
CKFC CKMO	ak	50 100	5 5F	Vancouver, B. C. Vancouver, B. C.				
KGNC	ag ae	1000	(2.5)	Amarillo, Texas				
WAAB	ak	500	C	Boston, Mass.			ļ	
WBCM	ae	500		Bay City, Mich.]		i
WHIS	ak	500	(1)	Bluefield, W. Va.				
WROK	ak ak	500 500	$\dot{\mathbf{C}}(1)$	Rockford, Ill. Montgomery, Ala.				
WSFA	ак	300	O(I)	woningomery,				
							i	
1420	ke	VS.	(211)	.1)				
1120	-10,	, -•	\					
CKGB	ak	100	F	Timmins, Ont.		1 .		
CMCQ	Z	250	1,122.	Havana, Cuba		"		
KABC	ak	100	(.25)	San Antonio, Texas				1
KABR	ak	100 100	\mathbf{p}_{\dots}	Aberdeen, S. Dak. Alexandria, La.				l
KALB KBPS	z aj	100	4	Portland, Ore.				
KCMC	ak	100	<u>.</u>	Texarkana, Ark.		1	1	
KEUB	Z	100	P	Price, Utah				
KFIZ	ak	100	: hi:	Fond du Lac, Wis.			j	
KGFF	ak	100	(.25)	Shawnee, Okla. San Francisco, Cal.				
KGGC KGIW	ak ak	100 100	i	Alamosa, Colo.]	1
KIDW	ak	100	î	Lamar, Colo.				•
KIUN	ak	100		Lamar, Colo. Pecos, Texas		1		
KNET	Z	100	D	Palestine, Texas Eugene, Ore.				
KORE	ae	100	Ď.	Abilene, Tex.				
KRBC KRLC	z ak	100 100	P 	Lewiston Idaho				
KRLH	z	100	Ď	Lewiston, Idaho Midland, Tex.				
KUMA		100		Yuma, Ariz.		i	1	i
KWBG		100	::::::	Hutchinson, Kans.				
KXL	ak	100) Portland, Ore.				
WACO WAGM		100 100	\mathbf{C}	Waco, Texas Presque Isle, Maine				
WAPO	z	100	ĎΡ	Chattanooga, Tenn.		1		
WAZL	ak	100	2	Hazleton, Pa.		1		
WCBS	ak	100	3/ 30	Springfield, Ill.) Charlottesville, Va.				
WCHV	ak ak	100 100	3(.25 3 X	Rocky Mount, N. C.				
WEED WEHS	ak ak	100	a	Cicero, Ill.			1	
WELL	ak	100		Battle Creek, Mich.				
WGPC	ak	100		Albany, Ga.				
WHDL	ak	100	D	Olean, N. Y.				1
WHFC	ae	100 100	a 2	Cicero, III. Wilmington, Del.			ļ	
WILM WJBO	aj ak	100		Baton Rouge, La.				
WJBR	Z	100	P	Gastonia, N. C				
WJMS	ak	100		Ironwood, Mich.				
WKBI	ak	100	(25)	Cicero, III.				
WLAP WLBF	ak ak	100 100	(.25)	Lexington, Ky. Kansas City, Kan.			1	
WLEU	ak ak	100	(.25)				1	1
WMAS		100	$\tilde{C}(.25)$	Springfield, Mass.				
WMBC	ae	100	(.25)	Detroit, Mich.				
WMBI		100	(.25)	Joplin, Mo.				
WMFJ		100	• • • •	Daytona Beach, Fla. Sheffield, Ala.				
WMSD WPAD		100 100	(.25)				1	
WPAR	ak	100		Parkersburg. W. Va.				1
WPRP	z	100	P(.25	i) Ponce, P. R.				
XEAZ	Z	7		Guanajuato, Gto				
XEFB	ak	100		Monterrey, N. L.		1	ı	•

	TATION	DI LKI	QUENCIE	3
1430 keys. (209.7)	Heard	Logged	Reported	Verified
CMJP ak 75 Camaguey, Cuba KECA ah 1000 (5) B Los Angeles, Calif. North Platte, Neb. KSO ak 500 B (1) Des Moines, Iowa WHEC ae 500 C (1) Columbus, Ohio WHEC ae 500 C (1) Rochester, N. Y. WHP ak 500 C (1) Harrisburg, Pa. WNBR ae 500 (1) Memphis, Tenn. WOKO aj 500 C (1) Albany, N. Y.	7	K.		
1440 kcys. (208.2)	ع	1)	
CMOA z 150 Havana, Cuba HP50 z 25 Colon, Panama KDFN ak 500 Casper, Wyo. KLS ag 250 D Oakland, Calif. KXYZ ak 1000 Houston, Texas TIFS z 7.5 (1441) Cartago, C. R. WBIG ae 500 C (1) Greensboro, N. C. WCBA aj 500 a Allentown, Pa. WMBID ak 500 C (1) Peoria, III. WSAN aj 500 a Allentown, Pa. XEFI ae 250 Chihuahua, Chih.	1			
1450 kcys. (206.8)	()		6:)
CFCT ae 50 Victoria, B. C. CHGS ae 50 F Summerside, P.E.I. KIEM ak 500 Eureka, Calif. KTBS ak 1000 N Shreveport, La. WGAR ak 500 B (1) Cleveland, Ohio WHOM ac 250 Jersey City, N. J. WSAR ae 1000 Fall River, Mass. WTFI ak 500 Y Athens, Ga.	D [Ha'	The state of the s	Ī
1460 kcys. (205.4)			- '	
CMCU z 150 Havana, Cuba CMKF z 50 Holguin, Cuba KSTP ak 25000 N St. Paul, Minn. WJSV ak 10000 C Washington, D. C				
1470 kcys. (204.0)				
CMOK z 150 Havana, Cuba KGA ak 5000 B Spokane, Wash. WLAC ak 5000 C Nashville, Tenn.				
1480 kcys. (202.6)				
KOMA ak 5000 C Oklahoma City, Okla, WKBW ck 5000 C Buffalo, N. Y.				•
1490 kcys. (201.2)				
KFBK ak 5000 C Sacramento, Calif. WCKY ae 5000 B Covington, Ky.				
1500 kcys. (199.9)				
CJIC ak 100 Sault Ste. Marie, Ont. CMCX z 150 Havana, Cuba KBIX z 100 P Big Spring, Tex. KDB ak 100 C Santa Barbara, Cal. KGFI ak 100 (.25) Corpus Christi, Tex. KGFK ak 100 Y Moorhead, Minn. KGKB ak 100 Tyler, Texas KGKY ak 100 (.25) Scottsbluff, Neb.				

NORTH AMERICAN B. C. STATIONS BY FREQUENCIES

KNEL	ak	100	D.	Brady, Texas	Heard	Logged	Reported	Verified
KNOW	ak	100	\mathbf{C}	Austin, Texas			-	
KOTN	ak	100	D	Pine Bluff, Ark.				1
KPLC	ak	100		Lake Charles, La.				}
KPLT	Z	100	DP	Paris, Texas				
KPQ	ak	100	(.25)					
KRNR	Z	100	D	Roseburg, Ore.				
KTEP	Z	100	P	El Paso, Texas				
KUTA	2	100	P	Salt Lake City, Utah				1
KVOE	ak	100		Santa Ana, Calif.			i	
KXO	ae	100		El Centro, Calif.		i		1
WCNW	ak	100		5) Brooklyn, N. Y.		1		
WDNC	ae	100	G	Durham, N. C.		1		
WGAL	ae	100	(.25)			1		
WHBB	z .	100	D	Selma, Ala.		1	1	
WHEF	ak	100	(.25)				· ·	
WJBK	ae	100	(.25)			1		1
WKBB	ak	100	(.25)			í	ł	
WKBV	ak	100	7 22	Richmond, Ind.		+		
WKBZ	ak	100	(.25)					
WKEU	ak	100	p	Griffin, Ga.				ļ.
WMBQ		100	1 (25)	Brooklyn, N. Y.			1	
WMEX	ak	100	(.25)			1		i
WNBF	ae	100	C	Binghamton, N. Y.				i
WNLC	Z	100	DP	New London, Conn. Bristol, Tenn.				
WOPI	ae	100		A 4				1
WRDW		100 100	(.25)					1
WRGA	ak ak	100		Rutland, Vt.				
WSYB	ak	100		East St. Louis, III.		1	i	
WTMV WWRL		100	176	(5) Woodside, N. Y.		1		
WWSW		100	(25)	Pittsburgh, Pa.				· ·
	z	100	P P	Valley City, N. Dak.			1	
	L		-	, and a second				
								1
1510	1		/10	0 6)				l .
1510	KC	ys.	(13	8.6)	•			
		•						1
CFRC	ak	100	F	Kingston, Ont.			1	
CKCR	ak	100		Waterloo, Ont.				
***************************************	****							
								1
1520	1		/10	6 (1)		1		
1530	KC	ys.	(1)	6.0)				
		-				i		1
W1XB	3 %	1000		Waterbury, Conn.		1		
W9XB		1000						
** / / / / / / / / / / / / / / / / / /				,				
						1		
1550	1		(10	2 1)		1		
1550	KC	ys.	(13	3.4)		1	1	
		-						
W2XR	Z	1000						
W6 X A	I ak	1000		. Bakersfield, Calif.		1	1	1

KEY TO SYMBOLS

As shown in the index by Frequencies and Dial Numbers

Frequency is given in kilocycles; wave lengths in meters. Night power is shown in watts in third column. Daytime power is shown in parenthesis in fourth column in kilowatts, thus (.25) indicating 250 watts. Some stations outside the United States use a "split frequency." Their exact frequency is shown in fourth column.

Second Column Symbols

- Verifies reception for return postage.
- Verifies only occasionally. b
- Does not verify.
- Verification 10c; letter 25c.
- Sends Ekko stamp for 10c.
- Sends Ekko stamp for 5c.
- Sends Ekko stamp for postage. Sends own station stamp for
- 10c. Sends own station stamp for 5c.
 - Sends own station stamp for postage.

- Has no stamps.
- Verifies for 5c. m
- Weather or time only
- No information available

Fourth Column Symbols National "Blue" network.

- Columbia network.
- Day time only. D
- Dn Day time with occasional evening hours.
- Canadian Radio Brdestg. Commission,
- National "Red" and "Blue"

- Has construction permit only
- National 'Red' network
 - S Sunday only.
 - Sy Synchronized.
- Has permit to increase power.
 - Has permit to change location.
- Has permit to change frequency.
- a-b-c. Small letters show stations using same transmitter. 1-2-3. Figures denote stations shar-
- ing time. No information.

NORTH AMERICAN B. C. STATIONS BY LOCATIONS

Frequency in kilocycles in second column. Night power in watts in third column. Net work affiliations in fourth column: C Columbia, R National Red, B National Blue, N National Red and Blue. F Canadian.

ALABAN	ЛА	CALIFORNIA	Stockton	Geinerelle
Birmingham		Bakersfield	KGDM 1100 1000	Gainesville WRUF 830 5000
WAPI 1140	5000 N	KERN 1370 100 C	KWG 1200 100 C	Jacksonville
WBRC 930	1000 C	W6XAI 1550 1000	Watsonville	WJAX 900 1000 N
WSGN 1310	100	Berkeley	KWAT 1310 250	WMBR 1370 100 C
Decatur WMFO 1370	100	KRE 1370 100		WLAK 1310 100
	100	Beverly Hills	COLORADO	Miami
Dothan WAGF 1370	250	KMPC 710 500	All	WIOD 1300 1000 N
Gadsden	230	Chico KHSL 950 250	Alamosa KGIW 1420 100	WQAM 560 1000 C
WJBY 1210	100	/00 250	Colorado Springs	WDBO 580 1000 C
Mobile		Del Monte KDON 1210 100	KVOR 1270 1000 C	Pensacola
WALA 1380	500 C	El Centro	Denver	WCOA 1340 500 C
Montgomery		KXO 1500 100	KFEL 920 500	St. Augistine WFOY 1210 100
WSFA 1410	500 C	Eureka	KLZ 560 1000 C	St. Petersburg
Selma		KIEM 1450 500	KOA 830 50000 N KPOF 880 500	WSUN 620 1000 N
WHBB 1500	100	Fresno	KVOD 920 500	Tallahassee WTAL 1310 100
Sheffield	400	KMJ 580 1000 C	Durango	WIAL 1310 100 Tampa
WMSD 1420	100	Glendale	KIUP 1370 100	WDAE 1220 1000 C
Tuscaloosa WJRI) 1200	100	KIEV 850 250	Grand Junction	West Palm Beach
175111) 1200	100	Hollywood	KFXJ 1200 100	WJNO 1200 100
		KFWB 950 1000 KMTR 570 1000	Greeley	
ALASKA	١	KNX 1050 50000	KFKA 880 500	GEORGIA
Anchorage		Long Beach	KIDW 1420 100	Albami
KFQD 780	250	KFOX 1250 1000	Pueblo	Albany WGPC 1420 100
Juneau		KGER 1360 1000 Los Angeles	KGHF 1320 500	Athens
KINY 1310	100	KECA 1430 1000 B	Sterling KGEK 1200 100	WTFI 1450 500
Ketchikan		KEHE 780 500	KGEK 1200 100	Atlanta WATL 1370 100
KGBU 900	500	KFAC 1300 1000 KFI 640 50000 R		WATL 1370 100 WGST 890 1000 C
	I	KFI 640 50000 R KFSG 1120 500	CONNECTICUT	WSB 740 50000 N
ARIZONA		KFVD 1000 250	Brlageport	Augusta
	[KGFJ 1200 100	WICC 600 500 C	WRDW 1500 100 Columbus
Jerome KCRJ 1310	400	KHJ 900 1000 C KRKD 1120 500	Hartford	WRBL 1200 100
KCRJ 1310 Lowell	100	Merced	WDRC 1330 1000 C WTIC 1040 50000 R	Griffin
KSUN 1200	100	KYOS 1040 250	WTHT 1200 100	WKEU 1500 100 Macon
Phoenix	100	Modesto KTRB 740 250	New Britain	WMAZ 1180 1000
KOY 1390	500	KTRB 740 250 Oakland	WNBC 1380 250	Rome
KTAR 620	1000 N	KLS 1440 250	New Haven WELI 900 500	WRGA 1500 100
Tucson	- 1	KLX 880 1000	New London	Savannah WTOC 1260 1000 C
KGAR 1370 KVOA 1260	100	KROW 930 1000 Pasadena	WNLC 1500 100	Thomasville
	500	KPPC 1210 100	Waterbury WATR 1190 100	WPAX 1210 100
Yuma KUMA 1420	100	Redding	W1XBS 1530 1000	Waycross WAYX 1200 100
1420	100	KVCV 1200 100 Sacramento		W/11/12 1200 100
		KFBK 1490 5000 C	551.194.55	
ARKANSA	s	KROY 1310 100	DELAWARE	HAWAII
Blytheville	-	San Bernardino	Wilmington	Hilo
KLCN 1290	100	KFXM 1210 1000 San Diego	WDEL 1120 250	KHBC 1400 250
El Dorado	1	KFSD 600 1000 B	WILM 1420 100	Honolulu .
KELD 1370 Fayetteville	100	KGB 1330 1000 C		KGMB 1320 1000 C . KGU 750 2500 N
	1000	San Francisco KFRC 610 1000 C	DISTRICT OF	30 2500 N
Fort Smith		KFRC 610 1000 C KGGC 1420 100	COLUMBIA	****
KFPW 1210	100	KGO 790 7500 B	Washington	IDAHO
Hot Springs KTHS 1060 1	0000 N	KJBS 1070 500 KPO 680 50000 R	WJSV 1460 10000 C	Boise
Jonesboro	2300 14	KPO 680 50000 R KSFO 560 1000	WMAL 630 250 B	KIDO 1350 1000
KBTM 1200	100	KYA 1230 1000 N	WOL 1310 100 WRC 950 500 R	Idaho Falls KID 1320 500
Little Rock KARK 890	250	San Jose	750 300 K	KID 1320 500 Lewiston
KGHI 1200	250 100	KQW 1010 1000 San Luis Obispo	+	KRLC 1420 100
KLRA 1390	1000 C	KVEC 1200 250	FLORIDA	Nampa
Pine Bluff		Santa Ana	Clearwater	KFXD 1200 100 Pocatello
KOTN 1500 Texarkana	100	KVOE 1500 100	WFLA 620 1000 N	KSEI 900 250
KCMC 1420	100	Santa Barbara KDB 1500 100 C	Daytona Beach	Twin Falls
		1300 100 C	WMFJ 1420 100	KTFI 1240 1000
			!	

NORTH AMERICAN B. C. STATIONS BY LOCATIONS

NORTH	AMERICAN B. C.	STATIONS BT LOC	ATIONS
ILLINOIS	Muncie	Covington	Fall River
	WLBC 1310 100	WCKY 1490 5000 B	WSAR 1450 1000
Bloomington	New Albany	Lexington	Lowell
WJBC 1200 100	WGRC 1370 250	WLAP 1420 100	WLLH 1370 100
Carthage	Richmond	Louisville WAVE 940 1000 N	New Bedford WNBH 1310 100
WCAZ 1070 100	WKBV 1500 100	WHAS 820 50000 C	Springfield
Champaign WDWS 1370 100	South Bend	Middlesboro	WBZA 990 1000 B
	WFAM 1200 100	WLMU 1210 100	WMAS 1420 100 C
Chicago WAAF 920 1000	WSBT 1360 500 C	Paducah WPAD 1420 100	WSPR 1140 500
WBBM 770 50000 C	Terre Haute	WFAD 1429 100	Worcester
WCFL 970 5000 B	WBOW 1310 100		WORC 1280 500 C
WCRW 1210 100	West Lafayette WBAA 890 500	LOUISIANA	WTAG 580 500 R
WEDC 1210 100	WBAA 890 500		
WENR 870 50000 N WGES 1360 500		Alexandria KALB 1420 100	MICHIGAN
WGN 720 50000	IOWA	KALB 1420 100 Baton Rouge	
WJJD 1130 20000		WJBO 1420 100	Battle Creek
WLS 870 50000 N	Ames	Lafayette	WELL 1420 100
WMAQ 670 50000 N	WOI 640 5000 Boone	KVOL 1310 100	Bay City WBCM 1410 500
WMBI 1080 5000	KFGQ 1370 100	Lake Charles	WBCM 1410 500 Calumet
WSBC 1210 100	Cedar Rapids	KPLC 1500 100 Monroe	WHDF 1370 100
Cicero	WMT 600 1000 B	KMLB 1200 100	Detroit
WEHS 1420 100 WHFC 1420 100	Council Bluffs	New Orleans	WJBK 1500 100
WKBI 1420 100	KOIL 1260 1000 B	WBNO 1200 100	WJR 750 50000 C
Decatur	Davenport WOC 1370 100 C	WDSU 1250 1000	WMBC 1420 100 WWJ 920 1000 R
WJBL 1200 100	Decorah	WJBW 1200 100	WXYZ 1240 1000 B
East Dubuque	KGCA 1270 100	WSMB 1320 500 N WWL 850 10000 C	East Lansing
WKBB 1500 100	KWLC 1270 100		WKAR 850 1000
East St. Louis	Des Moines	Shreveport KRMD 1310 100	Flint
WTMV 1500 100	KRNT 1320 500 C	KTBS 1450 1000 N	WFDF 1310 100
Harrisburg	KSO 1430 500 B	KWKH 1100 1000 C	Grand Rapids WASH 1270 500 N
WEBQ 1210 100	WHO 1000 50000 R		WOOD 1270 500 N
Jollet	lowa City WSUI 880 500		Ironwood
WCLS 1310 100	Marshalltown	MAINE	WJMS 1420 100
Peorla	KFJB 1200 100	Augusta	Jackson 100
WMBD 1440 500 C	Mason City	WRDO 1370 100	WIBM 1370 100
Quincy	KGLO 1210 100	Bangor	Kalamazoo WKZO 590 1000
WTAD 900 500	Shenandoah KFNF 890 500	WABI 1200 100	Lansing
Rockford	KMA 930 1000	WLBZ 620 500 C	WJIM 1210 100
WROK 1410 500	Sioux City	Portland	Lapeer
Rock Island	KSCJ 1330 1000 C	WCSH 940 1000 R	WMPC 1200 100
WHBF 1210 100		WSPG 640 500	Marquette WBEO 1310 100
Springfield	KANSAS	Presque Isle	Muskegon
WCBS 1420 100	KANSAS	WAGM 1420 100	WKBZ 1500 100
WTAX 1210 100	Abilene		Royal Oak
Tuscola	KFBI 1050 5000	MARYLAND	WEXL 1310 50
WDZ 1020 250 Urbana	Coffeyville		
WILL 580 1000	KGGF 1010 1000	Baltimore	MINNESOTA
Waukegan	Dodge City KGNO 1340 250	WBAL 760 2500 B	- WINTERESOTA
WCBD 1080 5000	Garden City	WBAL	Duluth
	KIUL 1210 100	WCBM 1370 100	KDAL
	Hutchinson	WFBR 1270 500 R	Fergus Falls KGDE 1200 100
INDIANA	KWBG 1420 100	Cumberland	Hibbing
Anderson	Kansas City WLBF 1420 100	WTBO 800 250	WMFG 1210 100
WHBU 1210 100	Lawrence	Frederick WFMD 900 500	Minneapolis
Elkhart	KFKU 1220 1000	Hagerstown	WCCO 810 50000 C
WTRC 1310 100	WREN 1220 1000 B	WJEJ 1210 100	WDGY 1180 1000
Evansville	Manhattan		WLB 1250 1000
WEOA 1370 100 WGBF 630 500	KSAC 580 500 Topeka		WTCN 1250 1000
Fort Wayne	WIBW 580 1000 C	MASSACHUSETTS	Moorhead KGFK 1500 100
WGL 1370 100 C	Wichita	Boston	Northfield
WOWO 1160 10000 C	KANS 1210 100	WAAB 1410 500 B	WCAL 1250 1000
Gary	KFH 1300 1000 C	WBZ 990 50000 C	Rochester
WIND 560 1000		WCOP 1120 500	KROC 1310 100
Hammond WWAE 1200 100	KENTUCKY	WEEI	St. Paul KSTP 1460 25000 N
Indianapolis		WMEX 1500 1000	WMIN 1370 100
WFBM 1230 1000 C	Ashland	WNAC 1230 1000 C	Virginia
WIRE 1400 500 R	WCMI 1310 100	WORL 920 500	WHLB 1370 100
	J	j .	

- NORTH	AMERICAN B. C.	STATIONS BY LOC	CATIONS
MISSISSIPPI	Norfolk	WLTH 1400 500	High Point
Clarksdale	WJAG 1060 1000 North Platte	WMBQ 1500 100	WMFR 1200 100
WMFN 1210 100	KGNF 1430 1000	WVFW 1400 500	Rajeigh
Gulfport	Omaha	Buffalo WBEN 900 1000 R	WPTF 680 5000 N
WGCM 1210 100	WAAW 660 500	WBEN 900 1000 R WBNY 1370 100	Rocky Mount
Hattiesburg WPFB 1370 100	WOW 590 5000 R	WEBR 1310 100 R	WEED 1420 100
Jackson	KGKY 1500 100	WGR 550 1000 C	Wilmington
WJDX 1270 1000 N	100	WKBW 1480 5000 C WSVS 1370 50	WMFD 1370 100
Kosciusko WHEF 1500 100	***************************************	WSVS 1370 50	Winston-Salem WSJS 1310 100 C
Laurel	NEVADA	WCAD 1220 500	WSJS 1310 100 C
WAML 1310 100	Reno	Chester	NORTH DAKOTA
Meridian WCOC 880 500	KOH 1380 500 C	WGNY 1210 100	
WCOC 880 500 Vicksburg	1	Elmira	Bismarck KFYR 550 1000 N
WQBC 1360 1000	NEW HAMPSHIRE	WESG 850 1000 C	Devils Lake
		Freeport	KDLR 1210 100
MISSOURI	Laconia	WGBB 1210 100	Fargo
- MISSOOKI	WLNH 1310 100	Jamestown WOCL 1210 50	WDAY 940 1000 N
Cape Girardeau	Manchester WFEA 1340 500 C	i	Grand Forks
KFVS 1210 100	Portsmouth	W2XR 1550 1000	KFJM 1370 100
Columbia KFRU 630 500	WHEB 740 250	New York	Mandan KGCU 1240 250
		WABC 860 50000 C	
Jefferson City WOS 630 500	NEW LEDGEN	WBNX 1350 250	Minot KLPM 1240 250
Joplin 500	NEW JERSEY	WBOQ 860 50000 WEAF 660 50000 R	Valley City
WMBH 1420 100	Asbury Park	WEVD 1300 1000	1500 100
Kansas City	WCAP 1280 500	WFAB 1300 1000	
KCMO 1370 100	WPG 1100 5000 C	WHN 1010 1000	ОНІО
KMBC 950 1000 C WDAF 610 1000 R	Camden	WINS 1180 1000 WJZ 760 50000 B	
WDAF 610 1000 R WHB 860 1000	WCAM 1280 500	WLWL 1100 5000	Akron
W9XBY 1530 1000	Jersey City WAAT 940 500	WMCA 570 500	WJW 1210 100
St. Joseph	WAAT 940 500 WHOM 1450 250	WNYC 810 1000 WOV 1130 1000	Canton
KFEQ 680 2500	Newark		WHBC 1200 100
St. Louis	WHBI 1250 1000	Olean WHDL 1420 100	Cincinnati
KFUO 550 500 KMOX 1090 50000 C	WNEW 1250 1000	Plattsburg	WCPO 1200 100 WKRC 550 1000 C
KSD 550 1000 R	WOR 710 50000 Red Bank	WMFF 1310 250	WKRC 550 1000 C WLW 700 500000 N
KWK 1350 1000 B	WBRB 1210 100	Rochester	WSAI 1330 1000 R
WEW 760 1000	Trenton	WHAM 1150 50000 B	Cleveland
WIL 1200 100	WTNJ 1280 500	WHEC 1430 500 C	WGAR 1450 500 B
Springfield KGBX 1230 500	Zarephath WAWZ 1350 500	Saranac Lake	WHK 1390 1000 C WJAY 610 500
KWTO 560 5000	1000 000	WNBZ 1290 100	WTAM 1070 50000 R
		Schenectady	Columbus
MONTANA	NEW MEXICO	WGY 790 50000 R	WBNS 1430 500 C
MONTANA	Albuquerque	Syracuse	WCOL 1210 100 WHKC 640 500
Billings	KGGM 1230 250	WFBL 1360 1000 C	WHKC 640 500 WOSU 570 750
KGHL 780 1000 N	KOB 1180 10000	WSYR 570 250 B	Dayton
- Butte KGIR - 1340 - 1000 N	KICA 1370 100	Troy WHAZ 1300 500	WHIO 1260 1000 R
Great Falls	Roswell	Utica	WSMK 1380 200 C
KFBB 1280 1000	KGFL 1370 100	WIBX 1200 100 C	Lima WDV V 1210
Kalispell KGEZ 1310 100	Santa Fe KIUJ 1310 100	White Plains	WBLY 1210 100
Lewistown	1310 100	WFAS 1210 100 Woodside	Portsmouth WPAY 1370 100
KDNC 1200 100		WWRL 1500 100	Toledo
Missoula	NEW YORK	100 100	WSPD 1340 1000 C
KGVO 1260 1000 Wolf Point	Albany		Youngstown
KGCX 1310 100	WABY 1370 100	NORTH CAROLINA	WKBN 570 500 C
	WOKO 1430 500 C	Asheville	Zanesville
NEBRASKA	Auburn WMBO 1310 100	WWNC 570 1000 N	WALR 1210 100
.15DMA3NA	Binghamton	WBT 1080 50000 C	OVI MINOS
Clay Center	WNBF 1500 100 C	WSOC 1210 100 N	OKLAHOMA
KMMJ 740 1000 Kearney	Brooklyn WARD 1400 500	Durham	Ada
KGFW 1310 100	WARD 1400 500 WBBC 1400 500	WDNC 1500 100 C Gastonia	KADA 1210 100
Lincoln	WBBR 1300 1000	WJBR 1420 100	Ardmore KVSO 1200 100
XFAB 770 10000 C	WCNW 1500 100	Greensboro	Elk City
KFOR 1210 100 C	WEGL 1400 500	WBIG 1440 500 C	KASA 1210 100

NORTH AMERICAN B. C. STATIONS BY LOCATIONS

		ORTH	AMERICAN	В. С.	SIAIIO	NS E	Y LOC	ATIONS		
Enid			Philadelphia	40000 D	Huron	4245	252	Houston		4000 N
KCRC	136 0	250		10000 R 50000 C	KGDY	1340	250	KPRC KTRH	920 1290	1000 N 1000 C
Musko			WDAS 1370	100	Pierre KGFX	630	200	KXYZ	1440	1000
KBIX	1500	100	WFIL 560	1000 B	Rapid		200	Kilgore		1000
Norma		1000	WHAT 1310	100	KBHB	1370	100	KOCA	1210	100
WNAD		1000	WIP 610	1000	WCAT	1200	100	Longvie		
Oklaho		100	WPEN 920	250	Sioux	Falls			1370	100
KFXR KGFG	1310 1370	100 100	WRAX 920 WTEL 1310	250 100	KSOO	1110	2500	Lubboc		100
KOMA	1480	5000 C		100	Vermil	lion		KFYO Midlan	1310	100
WKY	900	1000 N	Pittsburgh KDKA 980	50000 B	KUSD	890	500		1420	100
Ponca	City		KOV 1380	500	Water	own		Palestir	10	
	1200	100	WCAE 1220	1000 R	KWTN	1210	100	KNET	1420	100
Shawn	ee		WJAS 1290	1000 C	Yankt	on		Pampa	1210	100
KGFF	1420	100	WWSW 1500	100	WNAX	570	1000 C	KPDN Paris	1310	100
Tuisa			Reading	1000				KPLT	1500	100
KTUL	1400	500 C	WEEU 830 WRAW 1310	1000 100	TE	NNESS	FF	Pecos		
KVOO	1140	25000 N		100	l	.1414 E 3 3		KIUN	1420	100
			Scranton WGBI 880	500	Bristo	I		Port A		500
	REGO	N	WOAN 880	250	WOPI	1500	100	KPAC San An	1260	500
			Sunbury			anooga		KGKL	1370	100
Astoria		4.0-	WKOK 1210	100	WAPO	1420	100 C	San An		
KAST	1370	100	Wilkes-Barre		WDOD		1000 C	KABC	1420	100
Corval			WBAX 1210	100	Jackso		400		1370	100
KOAC	550	1000	WBRE 1310	100	WTJS	1310	100	KONO	1370	100
Eugen		100	Williamsport		Knoxy		1000 C	KTSA WOAI	550	1000 C 50000 N
KORE	1420	100	WRAK 1370	100	WNOX WROL	1310	1000 C 100	WUAI Sherma		30000 11
	th Fal		York		1		100	KRRV	1310	106
KFJI	1210	100	WORK 1320	1000	Memp		100	Temple		
Marsh		250	1		WMC	780	1000 N	KTEM	1370	100
Koos	1390	250	PUERTO F	2100	WNBR	1430	500	Tyler	1500	100
Medfo KMED		100	POERIO	1100	WREC	600	1000 C	KGKB Waco	1500	100
		100	Ponce		Nashv	ille			1420	100 C
Portia KALE	nd 1300	500 C	WPRP 1420	100	WLAC	1470	5000 C	Westac		
KBPS	1420		San Juan		WSM	650	50000 N		1260	500
KEX	1180		WKAQ 1240		Spring		400	Wichita		250 C
KFJR	1300		WNEL 1290	1000	WSIX	1210	100	KGKO	570	250 C
KGW	620				l			***		
KOIN KWJJ	940 1040		RHODE IS	LAND	i .	TEXAS	•		UTAH	
KXL	1420				<u> </u>				-	
Roseb			Newport		Abilen		400	Ogden		
KRNR		100	WNRI 1200	100	KRBC	1420	100	KLO	1400	500 N
Salem	1		Providence		KGNC		1000	Price	1420	100
KSLM	1370	100	WEAN 780		Austi			KEUB		
			WJAR 890 WPRO 630		KNOW		100 C	Salt La KDYL	1290	y 1000 N
PEN	NSYLV	ANIA	WPRO 630	230	Beaum		500	KSL	1130	50000 C
					KFDM Big S	560	500	KUTA	1500	100
Allent			SOUTH CAR	ROLINA	KBST	1500	100	l .		
WCBA					Brady			·		
WSAN Altoo		500	Anderson WAIM 1200	100	KNEL	1500	100	v	RMON	· ·
WFBG		100	1	100		e Stati				
Easto			Charleston WCSC 1360	500 N	WTAW	1120 Chris		Burling WCAX		100
WEST	1200	100		200.1	KGFI			1		100
Erie	1400	100	Columbia WIS 560	1000 N	Dallas			Rutlan WSYB		100
WLEU Glens		100		100011	KRLD		10000 C	St. Alb		
WIBG	970	100	Florence WOLS 1200	100	WFAA	800	50000 N	WODM		100
	sburg		Greenville	- • •	WRR	1280	500	Springs		
WHJB		250	WFBC 1300	1000 N	Dublic KFPL		100	WNBX		1000
Grove		***	Spartanburg		El Pa	1310	100	Waterb		
WSAJ	1310	100	WSPA 920		KTEP		100	WDEV		500
Harris WHP	1430	500 C			KTSM	1310	100	1		
WKBO					WDAH	1310	100			
Hazie	ton		SOUTH DA	KOTA	Fort \) VI	RGIN	IA
WAZL		100	Aberdoon		KFJZ	1370	100	1		
Johns		100	Aberdeen KABR 1420	100	KTAT	1240		Arlingt NAA		1000
WJAC Lanca		100	Brookings	- 00	WBAP		50000 N	NAA Charlo		
WGAL		100		1000	KLUF	1370	100	WCHV		
3.11			1		1			1		

	T		
Danville WBTM 1370 100	WISCONSIN	MANITOBA	Toronto
Harrisonburg WSVA 550 500	Fond du Lac KFIZ 1420 100	Brandon CKX 1120 100 F	CFRB 690 10000 (CKCL 580 100 I CRCT 840 5000 N
Lynchburg	Green Bay	Winnipeg	Waterioo
WLVA 1200 100	WHBY 1200 100 WTAQ 1330 1000	CJRC 630 1000 F	CKCR 1510 100
Newport News WGH 1310 100	Janesville	CKY 910 15000 F	Windsor
Norfolk	WCLO 1200 100		CKLW 1030 5000 CRCW 600 500 I
WTAR 780 500 N	LaCrosse WKBH 1380 1000	NEW BRUNSWICK	Wingham
Petersburg	Madison	Product A	CKNX 1200 50
WPHR 880 500	WHA 940 2500 WIBA 1280 1000 N	Fredericton CFNB 550 500 F	ł
Richmond	Manitowoc	Moncton	PRINCE EDWARD
WBBL 1210 100 WMBG 1210 100 C	WOMT 1210 100	CKCW 1370 100 F	ISLAND
WRVA 1110 5000 N	Milwaukee WEMP 1310 100	St. John	
Roanoke	WISN 1120 250 C	CHSJ 1120 500 F	Charlottetown CFCY 630 1000 1
WDBJ 930 1000 C	WTMJ 620 1000 N		CHCK 1310 50
	Poynette WIBU 1210 100	N. W. TERRITORY	Summerside
WASHINGTON	Racine		CHGS 1450 50 1
	WRJN 1370 100	Aklavik CJCU 1210 50	
Aberdeen KXRO 1310 100	Sheboygan WHBL 1300 500	3000 1210 50	QUEBEC
(XR() 1310 100 Bellingham	Stevens Point		
KVOS 1200 100	WLBL 900 2500	NOVA SCOTIA	Chicoutimi
Everett	Superior WEBC 1290 1000 N	Glace Bay	CRCS 950 100 I
(RK() 1370 50	1270 100011	VAS 685 2000	CKCH 1210 100 F
Olympia		Halifax	Montmagny
KGY 1210 100	WYOMING	CHNS 930 1000 F	VE9EK 1185 10
Pullman	Casper	Sydney	Montreal CFCF 600 400 N
WSC 1220 1000	KDFN 1440 500	CJCB 1240 1000 F	CFCF 600 400 N CHLP 1120 100 P
Seattle IRO 710 1000	Sheridan	Wolfville CKIC 1010 50	CKAC 730 5000 C
JR 970 5000 B	KWYO 1370 100		CRCM 910 5000 F
OL 1270 1000 C	[Yarmouth CJLS 1310 100	New Carlisie CHNC 960 1000 F
OMO 920 1000 R CRSC 1120 100	CANADA	1010	Quebec 900 1000 F
TW 1220 1000		ONTARIO	CHRC 580 100 F
VL 1370 100		- ONTARIO	CKCV 1310 100 F
XXA 760 250	ALBERTA	Brantford	CRCK 1050 1000 F
Spokane CFIO 1120 100	Calgary	CKPC 930 100 F	
FPY 890 1000 C	CFAC 930 100 F	Chatham	SASKATCHEWAN
GA 1470 5000 B	CFCN 1030 10000 CJCJ 690 100 F	CFCO 630 100 F	
HQ 590 1000 R	Edmonton	Cobalt CKMC 1210 50	Moose Jaw CHAB 1200 100 F
Tacoma M() 1330 250	CFRN 1260 100 F	Fort William	CJRM 540 1000 F
VI 570 1000 G	CJCA 730 1000 F	CKPR 730 100 F	Prince Albert
Walla Walla	Lethridge	Hamilton CHML 1010 100 F	CKBI 1210 100 F
UJ 1370 100	CJOC 950 100 F	CKOC 1120 500 F	Regina
Wenatchee		Kingston CFRC 1510 100 F	CHWC 1010 500 F CKCK 1010 500 F
PQ 1500 100	BRITISH COLUMBIA	CFRC 1510 100 F Kirkland Lake	Saskatoon
Yakima		CJKL 1310 100 F	CFQC 840 1000 F
		OF 1010 100 1	
	Chiliwack	London	Yorkton
IT 1310 100	CHWK 780 100 F	London CFPL 730 100 F	
	CHWK 780 100 F Kamloops CFJC 880 100 F	London CFPL 730 100 F North Bay CFCH 930 100 F	
WEST VIRGINIA	CHWK 780 100 F Kamloops CFJC 880 100 F Kelowna	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa	
WEST VIRGINIA Bluefield	CHWK 780 100 F Kamloops CFJC 880 100 F Kelowna CKOV 630 100 F	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F	CJGX 580 100 F
WEST VIRGINIA Bluefield /HIS 1410 500 Charleston	CHWK 780 100 F Kamiloops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott	NEWFOUNDLAND St. John's
WEST VIRGINIA Bluefield /HIS 1410 500 Charleston /CHS 580 500	CHWK 780 100 F Kamioops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100	CJGX 580 100 F NEWFOUNDLAND St. John's VOAC 1065 40
WEST VIRGINIA Bluefield /HIS 1410 500 Charleston /CHS 580 500 Clarksburg	CHWK 780 100 F Kamioops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail CJAT 910 1000 F	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100 St. Catherines	St. John's VOAC 1065 40 VOAS 940 100 VOGY 840 400
WEST VIRGINIA Bluefield /HIS 1410 500 Charleston /CHS 580 500 Clarksburg /EXP 1370 100 Fairmont	CHWK 780 100 F Kamiloops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail CJAT 910 1000 F Vancouver CJOR 600 500	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100 St. Catherines CKTB 1200 100 F Sault Ste. Marie	St. John's VOAC 1065 40 VOAS 940 100 VOGY 840 400 VONF 1195 500
WEST VIRGINIA Bluefield /HIS 1410 500 Charleston /CHS 580 500 Clarksburg /EXP 1370 100 Falrmont /MMN 890 250 C	CHWK 780 100 F Kamioops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail CJAT 910 1000 F Vancouver CJOR 600 500 CKCD 1010 100	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100 St. Catherines CKTB 1200 100 F Sault Ste. Marie CJIC 1500 100	CJGX 580 100 F NEWFOUNDLAND St. John's VOAC 1065 40 VOAS 940 100 VOGY 840 400
WEST VIRGINIA Bluefield /HIS 1410 500 Charleston /CHS 580 500 Clarksburg /EXP 1370 100 Fairmont /MMN 890 250 C Huntington	CHWK 780 100 F Kamiloops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail CJAT 910 1000 F Vancouver CJOR 600 500 CKCD 1010 100 CKFC 1410 50	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100 St. Catherines CKTB 1200 100 F Sault Ste. Marie CJIC 1500 100 Stratford	St. John's VOAC 1065 40 VOAS 940 100 VOGY 840 400 VONF 1195 500
WEST VIRGINIA Bluefield /HIS 1410 500 Charleston /CHS 580 500 Clarksburg /EXP 1370 100 Fairmont /MMN 890 250 C Huntington /SAZ 1190 1000 Parkersburg	CHWK 780 100 F Kamioops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail CJAT 910 1000 F Vancouver CJOR 600 500 CKCD 1010 100	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100 St. Catherines CKTB 1200 100 F Sault Ste. Marie CJIC 1500 100	St. John's VOAC 1065 40 VOAS 940 100 VOGY 840 400 VONF 1195 500
WEST VIRGINIA Bluefield VHIS 1410 500 Charleston VCHS 580 500 Clarksburg VEXP 1370 100 Fairmont VMMN 890 250 C Huntington VSAZ 1190 1000 Parkersburg VPAR 1420 100	CHWK 780 100 F Kamioops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail CJAT 910 1000 F Vancouver CJOR 600 500 CKCD 1010 100 CKFC 1410 50 CKMO 1410 100 F CKWX 1010 100 F CRCV 1100 1000 F	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100 St. Catherines CKTB 1200 100 F Sault Ste. Marie CJIC 1500 100 Stratford CJCS 1210 50 Sudbury CKSO 780 1000 F	CJGX 580 100 F NEWFOUNDLAND St. John's VOAC 1065 40 VOAS 940 100 VOGY 840 400 VONF 1195 500 VOWR 681 500 MIQUELON
WEST VIRGINIA Bluefield VHIS 1410 500 Charleston VCHS 580 500 Clarksburg VEXP 1370 100 Fairmont VMMN 890 250 C Huntington VSAZ 1190 1000 Parkersburg	CHWK 780 100 F Kamiloops CFJC 880 100 F Kelowna CKOV 630 100 F Prince Rupert CFPR 580 50 Trail CJAT 910 1000 F Vancouver CJOR 600 500 CKCD 1010 100 CKFC 1410 50 CKMO 1410 100 F CKWX 1010 100 F	London CFPL 730 100 F North Bay CFCH 930 100 F Ottawa CKCO 1010 100 F CRCO 880 1000 F Prescott CFLC 930 100 St. Catherines CKTB 1200 100 F Sault Ste. Marie CJIC 1500 100 Stratford CJCS 1210 50 Sudbury	St. John's VOAC 1065 40 VOAS 940 100 VOGY 840 400 VONF 1195 500 VOWR 681 500

	N	ORTH	AMERIO
All	NTRA MERIC	A	Saitillo XEAS XELA XEOX
co	STA RI	CA	Torreor XETB
Cartag		7 5	Villa A
TIFS TIGA San J	1441 1014	7.5 30	XERA
TIEP	850	500	
TIFA TIGH	1050 1000	75 500	Mexico XEAI
TIĞPH		1000	XEB
TIRH	930	50	XECW XEFA
TIVCA TIX	1225 800		XEFO
			XEFZ XEK
GU	ATEMA	LA	XEL XEMX
	mala Ci	ty	XEN
TGW TGX	1210 1400	250	XEW XEWZ
10.1	1100		XEXM
н	ONDUR	45	XEXM XEYZ XFX
Teguc HRN	igalpa 1340	100	<u>-</u>
	CARAG		DI
	CARAG		Durang XEE
Mana	gua 1275	20	
YNLF YNOP	1275	100	GUA
YNVA		30	
	PANAM/		Guana XEAZ
			Leon XEKL
Colon HP50	1440	25	
EL	SALVAI	DOR	J
San S RDN	680	500	Guada XEA XED
N	IEXIC	0	LOWER
AGU	SCALIE	NTES	Agua (XEBC
Aguas	caliente		Corona
XFA	1310	5	XEMZ
XFC	810	350	Ensena XEG
CI	HAUHI	UA	Mexica XEAA
Chihu XEFI	Jahua 1440	250	XEAO Rosarii
Hidal			XEAQ
XEAT	1210	50	TiJuan XEAC
Juare XEFV	1210	100	XEC
XEF	980	100	XEFL XEMO
XEJ XEP	1020 1160	100 6 500	XEOK XESL
c	OAHUIL	.A	·
Piedra	as Negra	 s	MIC
XELO	1110	10000	Morelia
XEPN	590	50000	XEI

MERIO	CAN	В. С.	S
Saltillo			T
XEAS	1160	100	-1
XEAS XELA XEOX	1240	50	
	640	500	
Torreon XETB		125	
VIIIa A	suna 840 2	50000	
	D. F.		
— Mexico			٠
XEAL	1240	100	1
XER	1030	10000	
XECW XEFA XEFO XEFZ XEK	1180	500	
XEFA XEFO	940	5000	
XEFZ XEK	990	100 100	
XEK XEL	1100	250	
XEMX YEN	1280 710	12 1000	
XEW	890		
XEMX XEN XEW XEWZ	1150	100	
XEXM XEYZ	610 780	10000	
XFX	610	1000	
	JRANG	 60	-
Durang			-
XEE	1210	50	
GUA	NAJU	АТО	
Guana) XEAZ		7	
Leon	1420	7	
XEKL	1240	500	
J	ALISC	0	
Guadai			
XEA XED	1060 1155	500 2500	
LOWER	CALL	CORNIA	-
			-
XEBC C	730	5000	
Corona XEMZ	do Isla 820	and 	
Ensena XEG			
Mexica		200	
XEAA XEAO	920 560	200 250	
Rosarit XEAQ	1090	1000	
TiJuan: XEAC	a 1240	250	
XEC	1160	30	
XEFL	1150	250	
XEMO XEOK	860 760	5000 250	
XESL	1160		
	HOAC	'AN	-
MIC	CHOAC	-AN	-

		(\mathbf{T})
NUEVO LEG		C GN
Monterrey		C
XEFB 1420 XEFJ 1230	100	$\overline{\mathbf{CN}}$
XEFJ 1230	100	CN CN
XEH 1150	250	$\mathbb{C}\mathbb{N}$
XET 690 XEX 1310	500 125	C
AEA 1310		CA
PUEBLA		CN CN
Puebla		C
XETH 1210	100	CN
SAN LUIS PO	TOSI	GN GN GN
San Luis Potos XEZZ 1370	100	GN GN
5011001		CN CN
SONORA		GN GN
Hermosillo XEBH 930	500	GN GN
Nogales XEAF 990	500	CN
TAMAULIP		GN GN GN
		CN
Matamoros XEAM 750	7.5	GN GN GN GN
Nuevo Laredo	100	$\frac{GN}{GN}$
XEBK 1000 Vege 1246	250	CA
XEBK 1000 XEFE 1340 XENT 910 15	0000	CA
Reynosa	0000	CM CM CM CM CM CM
XEAW 960 5	0000	CN
Tampico	250	<u>CN</u>
XEFW 1310 XES 990	250 250	GN GN
VERACRU	z	CN CN
Cordoba		_ 6
XEAG 1310	10	CN
Jalapa XFB 1270	250	C
XFD 1340	350	CN CN
XETF 1220	12	
Veracruz XETF 1220 XEU 1010	250	CI
YUCATAN		CN
Merida	105	CM
XEFC 560	100	CN
XEME 1240	15 10	(1)
XEY 1000 XEZ 630	500	CI
ALL 030	300	CI CI CI
WEST IND	IES	
CUBA		_
Calbarlen CMHD 1270	250	H
Camaquey	- 1	7
CIRCULA 4040	50	HI
CMJA 1010	150	HI
CM.IC 1390	EA !	
CM.IC 1390	200	_
CM.IC 1390	200	_
CM.IC 1390	200 250 100	_
CMJC 1390 CMJE 1220 CMJF 1150 CMJK 780	200 250	_ _

TION									
Carden CMGE	as 1 270	150							
CMGE	1370 La Avilla	150							
Clego d CMJH CMJI CMJO	1360	100							
CMJI	1130	50 50							
Clamfin	O O E								
CMHJ CMHW CMHX	1160	100							
CMHW	820	100							
Common									
Cruces CMHK	1330	250							
Havana	1 40	150							
CMBD	1170	150							
CMBG	1140	200							
CMBN CMBS	770	150							
CMBX	1070	500							
CMBY CMBZ	970 1000	150 150							
CMCA	1350	250							
CMCB CMCD	1230 950	150 250							
CMCF	810	600							
CMCG	680	150							
CMCO	1200	150							
CMCQ	1420	250							
CMCU	1460	150							
CMCW	750	150							
CMCY	1030	1000							
CMK	730	3000							
CMOA CMOK	$\frac{1440}{1470}$	150 150							
CMOX	1320	200							
CMQ	880 600	500 1400							
CMX	920	1000							
CMUE Havana CMBC CMBC CMBD CMBS CMBS CMBS CMBS CMBY CMBZ CMCA CMCB CMCB CMCCB CMCB	n 1460	254							
CMKF Manza CMKM	nillo	230							
CMKM	1120	50							
Matanz CMGC CMGF CMGH	1400	100							
CMGF	1120	150							
Pinar	iel Rio	230							
CMAB	1340								
CMHA	1070	50							
Sancti	Spiritu	5							
Santa	Clara	30							
CMHI	1210	150							
CMGH Pinar of CMAB Sagua CMHA Sancti CMHB Santa CMHI Santia CMHI CMKC CMKC	1250	150							
CMKD	1050 1400	250 100							
CMKD CMKR CMKX	1190	75							
DOMINICAN Republic									
San Pe HIH	dro de 1395	Macoris 15							
Trujille	0								
HIJ HIX	1195 800	15 700							
HIZ	1370	10							
	HAITI								
Port-a	u-Princ	e							
ннк	920	1000							

125

Morelia XEI 1370

	CFAC 930 100	CJIC 1500		
	Calgary, Alta.	S. Ste. Marle, Ont.	100	CMAB 1340 Pinar del Rio, Cuba
,	CFCF 600 400	CJKL 1310 1	100	CMBC 640 150
	Montreal, Que.	Kirkland Lake, Ont.		Havana, Cuba
-	North Bay, Ont.	Yarmouth, N. S.	100	CMBD 1170 150
	CFCN 1030 10000		.00	Havana, Cuba CMBG 1140 200
	Calgary, Alta.	Lethbridge, Alta.		Havana, Cuba
	CFCO 630 100 Chatham, Ont.	CJOR 600 5 Vancouver, B. C.	00	CMBN 850 150
	CFCT 1450 50		00	Havana, Cuba CMBS 770 150
<u> </u>	Victoria, B. C.	Winnipeg, Man.		CMBS 770 150 Havana, Cuba
	CFCY 630 1000 Charlottetown, P.E.I.	CJRM 540 10	00	CMBX 1070 500
	CFJC 880 100	Moose Jaw, Sask, CKAC 730 50	00	Havana, Cuba CMBY 970 150
	Kamloops, B. C.	Montreal, Que,		CMBY 970 150 Havana, Cuba
	CFLC 930 100 Prescott, Ont,		00	CMBZ 1000 150
	CFNB 550 500	Prince Albert, Sask. CKCD 1010 . 1	<u> </u>	Havana, Cuba CMCA 1350 250
	Fredericton, N. B.	Vancouver, B. C.	00	CMCA 1350 250 Havana, Cuba
	CFPL 730 100 London, Ont.	CKCH 1210 1	00	CMCB 1230 150
	CFPR 580 50	Hull, Que.		Havana, Cuba CMCD 950 250
	Prince Rupert, B. C.	Regina, Sask.	00	CMCD 950 250 Hayana, Cuba
	CFQC 840 1000 Saskatoon Sask		00	CMCF 810 600
-	CFRB 690 10000	Toronto, Ont.		Havana, Cuba CMCG 680 150
	Toronto, Ont	Ottawa, Ont.	00	CMCG 680 150 Havana, Cuba
	CFRC 1510 100 Kingston, Ont		00	CMCJ 1110 500
	CFRN 1260 100	Waterloo, Ont.		Havana, Cuba
	Edmonton, Alta.	CKCV 1310 1 Quebec, Que.	00	CMCO 1200 150 Havana, Cuba.
	CHAB 1200 100		00	CMCQ 1420 250
ļ	Moose Jaw, Sask.	Moneton, N. B.		Havana, Cuba
	Charlottetown, P. E. I.	CKFC 1410 Vancouver, B. C.	50	CMCR 1380 150 Havana, Cuba
	CHGS 1450 50	CKGB 1420 1	00	CMCU 1460 150
-	Summerside, P. E. I. CHLP 1120 100	Timmins, Ont.	_	Havana, Cuba
	Montreal, Que.	CKIC 1010 Wolfville, N. S.	50	CMCW 750 150 Havana, Cuba
	CHML 1010 100	CKLW 1030 50	00	CMCX 1500 150
	Hamilton, Ont.	Windsor, Ont.		Havana, Cuba
	New Carlisle, Que.	CKMC 1210 Cobalt, Ont.	50	CMCY 1030 1000 Havana, Cuba
	CHNS 930 1000	1	00	CMGC 1400 100
 	Halifax, N. S. CHRC 580 100	Vancouver, B. C.		Matanzas, Cuba
L	Quebec, Que.	CKNX 1200 Wingham, Ont.	50	CMGE 1370 150 Cardenas, Cuba
	CHSJ 1120 500	1	00	CMGF 1120 150
<u> </u>	St. John, N. B. CHWC 1010 500	Hamilton, Ont.	ļ	Matanzas, Cuba
	Regina, Sask.	CKOV 630 10 Kelowna, B. C.	20	CMGH 790 250 Matanzas, Cuba
	CHWK 780 100	CKPC 930 10	00	CMHA 1070 50
— —	Chilliwack, B. C.	Brantford, Ont.		Sagua la Grande, Cu.
1	Trail, B. C.	CKPR 730 10 Fort William, Ont.	00	CMHB 1240 50 Sancti Spiritus, Cuba
	CJCA 730 1000	CKSO 780 100	10	CMHD 1270 . 250
<u> </u>	Edmonton, Alta	Sudbury, Ont.		Calbarien, Cuba
	CJCB 1240 1000 Sydney, N. S.	CKTB 1200 10 St. Catherines, Ont,	00	CMH! 1210 150 Santa Clara, Cuba
	CJCJ 690 100	CKUA 580 50	0	CMHJ 1160 100
ļ	Calgary, Alta.	Edmonton, Alta.		Clenfuegos, Cuba
	CJCS 1210 50 Stratford, Ont.	CKWX 1010 10 Vancouver, B. C.	0	CMHK 1330 250 Cruces, Cuba
	CJCU 1210 50	CKX 1120 10	0	CMHW 820 100
	Aklavik, N. W. T.	Brandon, Man.		Clenfuegos, Cuba
	CJGX 580 100 Yorkton, Sask.	CKY 910 1500 Winnipeg, Man.	0	CMHX 760 200
		тапрек, ман.		Cienfuegos, Cuba
			L	

	CMJA 1010 50 Camaguey, Cuba		HIJ 1195 15 Trujillo, D. R.	KEUB 1420 10
	CMJC 1390 150 Camaguey, Cuba		HIX 800 700	Price, Utah KEX 1180 500
	CMJE 1220 50		Trujiilo, D. R HIZ 1370 10	Portland, Ore. KFAB 770 1000
	Camaguey, Cuba CMJF 1150 200	-	Trujiilo, D. R. HP50 1440 25	Lincoln, Neb.
	Camaguey, Cuba		Colon, Panama	Los Angeles, Calif.
	CMJH 1360 100 Clego de Avila, Cuba		HRN 1340 100 Tegucigalpa, Hond.	KFBB 1280 100 Great Falls, Mont.
	CMJI 1130 Clego de Avila, Cuba		KABC 1420 100	KFBI 1050 500
	CMJK 780 250		San Antonio, Texas KABR 1420 100	Abilene, Kans. KFBK 1490 500
	Camaguey, Cuba CMJL 1340 100		Aberdeen, S. Dak. KADA 1200 100	Sacramento, Calif.
_	Camaguey, Cuba		Ada, Okla.	Beaumont, Texas
	CMJO 1180 50 Clego de Avlla, Cuba		KALB 1420 100 Alexandria, La.	KFDY 780 1000 Brookings, S. D.
	CMJP 1430 75 Camaguey, Cuba		KALE 1300 500 Portland, Ore.	KFEL 920 500
	CMJX 830		KANS 1210 100	Denver, Colo. KFEQ 680 2500
	Camaguey, Cuba CMK 730 3000		Wichita, Kans. KARK 890 250	St. Joseph, Mo. KFGQ 1370 100
	Havana, Cuba CMKC 1250 150		Little Rock, Ark.	Boone, Iowa
_	Santiago, Cuba		Elk Clty, Okla.	Wichita, Kans.
	CMKD 1050 250 Santiago, Cuba		KAST 1370 100 Astoria, Ore.	KFI 640 50000 Los Angeles, Calif.
	CMKF 1460 250 Holguin, Cuba		KBHB 1370 100	KFIO 1120 100
	CMKM 1120 50		Rapid City, S. Dak. KBIX 1500 100	Spokane, Wash. KFIZ 1420 100
-	Manzanillo, Cuba CMKR 1400 100		Muskogee, Okla. KBPS 1420 100	Fond du Lac, Wis.
-	Santiago, Cuha	<u> </u>	Portland, Ore.	Marshalltown, Iowa
	CMKX 1190 75 Santlago, Cuba		KBST 1500 100 Big Spring, Texas	KFJI 1210 100 Klamath Falls, Ore.
	CMOA 1440 150 Hayana, Cuba		KBTM 1200 100 Jonesboro, Ark.	KFJM 1370 100
	CMOK 1470 150		KCMC 1420 100	Grand Forks, N. D. KFJR 1300 500
	Havana, Cuba CMOX 1320 200		Texarkana, Ark. KCMO 1370 100	Portland, Ore. KFJZ 1370 100
	Havana, Cuba		Kansas City, Mo.	Fort Worth, Texas
_	Havana, Cuba		KCRC 1360 250 Enid, Okla.	KFKA 880 500 Greeley, Colo.
	CMW 600 1400 Havana, Cuba		KCRJ 1310 100 Jerome, Ariz.	KFKU 1220 1000
	CMX 920 1000 Havana, Cuba		KDB 1500 100	Lawrence, Kans. KFNF 890 500
	CRCK 1050 1000		Santa Barbara, Calif. KDFN 1440 500	Shenandoah, Iowa KFOR 1210 100
	Quebec, Que. CRCM 910 5000	<u> </u>	Casper, Wyo. KDKA 980 50006	Lincoln, Neb.
-	Montreal, Que.		Pittsburgh, Pa.	KFOX 1250 1000 Long Beach, Calif.
-	Ottawa, Ont.	ļ <u>.</u>	KDLR 1210 100 Devils Lake, N. D.	KFPL 1310 100 Dublin, Texas
	CRCS 950 100 Chicoutinii, Que.		KDNC 1200 100 Lewistown, Mont.	KFPW 1210 100
	CRCT 840 5000 Toronto, Ont.		KDON 1210 100	Fort Smith, Ark. KFPY 890 1000
	CRCV 1100 1000		Del Monte, Calif. KDYL 1290 1000	Spokane, Wash. KFQD 780 250
	Vancouver, B. C. CRCW 600 500		Salt Lake City, Utah	Anchorage, Alaska
_	Windsor, Ont.		Los Angeles, Calif.	San Francisco, Calif.
	St. Plerre, Miq.		KEHE 780 500 Los Angeles, Calif.	KFRO 1370 100 Longview, Texas
	HHK 920 1000 Port-au-Prince, Haiti	1 7	KELD 1370 100 El Dorado, Ark.	KFRU 630 500
	HIH 1395 15		KERN 1370 100	Columbia, Mo. KFSD 600 1000
	Sau Pedro de M., D. R.		Bakersfield, Calif.	San Diego, Calif.

KFSD 1120 500 Los Angeles, Calif.	KGGF 1010 1000 Coffeyville, Kans.	KIUJ 1310 100 Santa Fe, N. Mex.
KFUO 550 500	KGGM 1230 250	KIUL 1210 100
St. Louis, Mo. KFVD 1000 250	Albuquerque, N. M. KGHF 1320 500	Garden City, Kans.
Los Angeles, Calif.	Pueblo, Colo.	Pecos, Texas
KFVS 1210 100 Cape Girardeau, Mo.	KGHI 1200 100 Little Rock, Ark.	KIUP 1370 100 Durango, Colo.
KFWB 950 1000	KGHL 780 1000	KJBS 1070 500
Hollywood, Calif.	Billings, Mont. KGIR 1340 1000	San Francisco, Calif. KJR 970 5000
Nampa, Idaho	Butte, Mont.	Seattle, Wash.
Grand Junction, Colo.	KGIW 1420 100 Alamosa, Colo.	KLCN 1290 100 Blytheville, Ark.
KFXM 1210 100 San Bernardino, Calif.	KGKB 1500 100	KLO 1400 500
KFXR 1310 100	Tyler, Texas KGKL 1370 100	Ogden, Utah KLPM 1240 250
Oklahoma City, Okla.	San Angelo, Texas	Minot, N. D.
KFYO 1310 100 Lubbock, Texas	KGKO 570 250 Wichita Falls, Texas	KLRA 1390 1000 Little Rock, Ark.
KFYR 550 1000	KGKY 1500 100	KLS 1440 250
Bismarck, N. D. KGA 1470 5000	Scottsbluff, Neb.	Oakiand, Calif. KLUF 1370 100
Spokane, Wash.	Mason City, Iowa	Galveston, Texas
KGAR 1370 100 Tucson, Ariz.	KGMB 1320 1000 Honolulu, T. H.	KLX 880 1000 Oakland, Calif.
KGB 1330 1000	KGNC 1410 1000	KLZ 560 1000
San Diego, Callf. KGBU 900 500	Amarillo, Texas KGNF 1430 1000	Denver, Colo. KMA 930 1000
Ketchikan, Alaska	North Platte, Neb.	Shenendoah, Iowa
KGBX 1230 500 Springfield, Mo.	KGNO 1340 250 Dodge City, Kans.	KMAC 1370 100 San Antonio, Texas
KGCA 1270 100	KGO 790 7500	KMBC 950 1000
Decorah, Iowa KGCU 1240 250	San Francisco, Calif.	Kansas City, Mo. KMED 1310 100
Mandan, N. D.	Honolulu, T. H.	Medford, Ore.
Wolf Point, Mont.	Missoula, Mont.	KMJ 580 1000 Fresno, Calif.
KGDE 1200 100	KGW 620 1000	KMLB 1200 100
Fergus Fails, Minn.	Portland, Ore. KGY 1210 100	Monroe, La. KMMJ 740 1000
Stockton, Calif.	Olympia, Wash.	Clay Center, Neb.
KGDY 1340 250 Huron, S. D.	KHBC 1400 250 Hilo, T. H.	KMO 1330 250 Tacoma, Wash.
KGEK 1200 100	KHJ 900 1000	KMOX 1090 50000
Sterling, Colo.	Los Angeles, Caiif.	St. Louis, Mo. KMPC 710 500
Long Beach, Calif.	Spokane, Wash,	Beverly Hills, Calif.
KGEZ 1310 100 Kalispell, Mont.	KHSL 950 250 Chico, Calif.	KMTR 570 1000 Hollywood, Calif.
KGFF 1420 100	KICA 1370 100	KNEL 1500 100
Shawnee, Okla.	Clovis, N. M. KID 1320 500	Brady, Texas KNET 1420 100
Oklahoma City, Okla.	Idaho Falls, Idaho	Palestine, Texas
KGFI 1500 100 Corpus Christi, Texas	KIDO 1350 1000 Boise, Idaho	KNOW 1500 100 Austin, Texas
KGFJ 1200 100	KIDW 1420 100	KNX 1050 50000
Los Angeles, Calif.	Lamar, Colo. KIEM 1450 500	Hollywood, Calif. KOA 830 50000
Moorhead, Minn.	Eureka, Calif.	Denver, Colo.
KGFL 1370 100 Roswell, N. M.	KIEV 850 250 Glendale, Calif.	KOAC 550 1000 Corvallis, Ore.
KGFW 1310 100	KINY 1310 100	KOB 1180 10000
Kearney, Neb.	Juneau, Aiaska KIRO 710 1000	Albuquerque, N. M. KOCA 1210 100
Pierre, S. D.	Seattle, Wash.	Kilgore, Texas
KGGC 1420 100 San Francisco, Calif.	Yakima, Wash.	KOH 1380 500 Reno, Nev.
1	1	1

	KOIL 1260 1000	KR		100		KVI 570	1000
-	Council Bluffs, Iowa KOIN 940 1000	Saci KR	amento, Calif RV 1310	100		Tacoma, Wash.	100
	Portland, Ore.	She	man, Texas			Seattle, Wash.	F00
	KOL 1270 1000 Seattle, Wash.	KR: Sea:	tle, Wash.	100		KVOA 1260 Tucson, Ariz.	500
	KOMA 1480 5000	KS	C 580	500		KVOD 920 Denver, Colo.	500
-	Oklahoma City, Okla. KOMO 920 1000	KS	hattan, Kans J 1330	1000		KVOE 1500	100
	Seattle, Wash.		x City, Iowa	4000		Santa Ana, Calif.	100
	KONO 1370 100 San Antonio, Texas	KSI St.	550 Louis, Mo.	1000		Lafayette, La.	100
	KOOS 1390 250	KSI		250		KVOO 1140 Tulsa, Okia.	25000
	Marshfield, Ore. KORE 1420 100	KSI	atello, Idaho F O 560	1000		KVOR 1270	1000
	Eugene, Ore. KOTN 1500 100	San KS	Francisco, Ca 1130	lif. 50000	}	Colorado Spgs., Co KVOS 1200	olo. 100
	Pine Bluffs, Ark.		Lake City, U			Bellingham, Wash	
	KOY 1390 500 Phoenix, Ariz.	KS	.M 1370 m, Ore.	100		KVSO 1210 Ardmore, Okla.	100
	KPAC 1260 500	KS	1430	500		KWAT 1310	250
	Port Arthur, Texas KPDN 1310 100	Des	Moines, Iowa OO 1110	1 2500		Watsonville, Calif.	100
	Pampa, Texas	Sio	x Falls, S. D.			Hutchinson, Kans	
	KPLC 1500 100 Lake Charles, La.	KS St.	FP 1460 Paul, Minn.	25000		KWG 1200 Stockton, Calif.	100
	KPLT 1500 100	KS	JN 1200	100		KWJJ 1040 Portland, Ore.	50
	Paris, Texas KPO 680 50000	KT	veli, Ariz. AR 620	1000		KWK 1350	1000
	San Francisco, Calif.		enix, Ariz.	1000		St. Louis, Mo. KWKH 1100	10000
	KPOF 880 500 Denver, Colo.	For	AT 1240 t Worth, Texa			Shreveport, La.	
	KPPC 1210 100	KT	BS 1450 eveport, La.	1000		KWLC 1270 Decorah, Iowa	10
	Pasadena, Calif. KPQ 1500 100		EM 1370	100		KWSC 1228	100
	Wenatchee, Wash.	Tei	nple, Texas EP 1500	100	\vdash	Puliman, Wash. KWTN 1210	100
	Houston, Texas		Paso, Texas	100		Watertown, S. D.	
	KQV 1380 500 Pittsburgh, Pa.	KT Tw	Fi 1240 in Falls, Idaho	1000		KWTO 560 Springfield, Mo.	500
	KQW 1010 1000	кт	HS 1060	10000		KWYO 1370	10
	San Jose, Calif. KRBC 1420 100		t Springs, Ark RB 740	250		Sheridan, Wyo. KXA 760	25
	Abilene, Texas		desto, Calif.			Seattle, Wash.	10
	KRE 1370 100 Berkeley, Calif.		RH 1290 uston, Texas	1000	<u> </u>	Portland, Ore.	10
	KRGV 1260 500	кт	SA 550	1000		KXO 1500 El Centro, Calif.	10
	Weslaco, Texas		Antonio, Te: SM 1310	xas 100	·	KXRO 1310	10
	Los Angeles, Calif.		Paso, Texas	500		Aberdeen, Wash. KXYZ 1440	100
	KRKO 1370 50 Everett, Wash.		UL 1400 Isa, Okla.	300		Houston, Texas	
	KRLC 1420 100 Lewiston, Idaho	K7	W 1220 ttle, Wash.	1000		KYA 1230 San Francisco, Ca	100 alif.
	KRLD 1040 10000	K	1370	100		KYOS 1040	25
	Dallas, Texas		lia Walla, Wa	sh. 100		Merced, Calif. KYW 1020	1000
	Midland, Texas		ma, Arlz.	100		Philadelphia, Pa.	
	KRMD 1310 100 Shreveport, La.		I OA 1260 yetteville, Ark	1000		NAA 690 Arlington, Va.	100
	KRNR 1500 100	K	SD 890	500		RDN 680	50
	Roseburg, Ore. KRNT 1320 500		rmillion, S. D. J TA 1500	100		San Salvador, E. S TGW 1210	5. 1000
	Des Moines, Iowa	Sa.	t Lake City, I	Utah	<u> </u>	Guatemala, Gua.	
	KROC 1310 100 Rochester, Minn.		dding, Calif.	100		TGX 1400 Guatemala City	25
	KROW 930 1000	K	EC 1200	250		TIEP 850	50
	Oakland, Calif.	Sa Sa	a Luis Obispo,	Cani.		San Jose, C. R.	
					1		

	TIFA 1050	75	WATL 1370	100	l woon
	San Jose, C. R.		Atlanta, Ga.	100	WCAD 1220 500 Canton, N. Y.
	Cartago, C. R.	.5	WATR 1190 Waterbury, Conn.	100	WCAE 1220 1000
		30	WAVE 940	1000	Pittsburgh, Pa. WCAL 1250 1000
	Cartago, C. R.	00	Louisville, Ky.		Northfield, Minn
	San Jose, C. R.		Zarephath, N. J.	500	WCAM 1280 500 Camden, N. J.
	TIGPH 650 10 San Jose, C. R.	00	WAYX 1200	100	WCAO 600 500
 	-1	50	Wayeross, Ga.	100	Baltimore, Md.
	San Jose, C. R.		Hazleton, Pa.	100	WCAP 1280 500 Asbury Park, N. J.
İ	San Jose, C. R.	··	WBBA 890 West Lafayette, Ir	500	WCAT 1200 100
	TIX 800		WBAL 760	2500	Rapid City, S. D. WCAU 1170 50000
<u> </u>	San Jose, C. R. VAS 685 200	,,	Baltimore, Md.		Philadelphia, Pa.
	Glace Bay, N. S.	,,	Baltimore, Md.	10000	WCAX 1200 100 Burlington, Vt.
		10	WBAP 800	50000	WCAZ 1070 100
-	Montmagny, Que.	10	Fort Worth, Texas WBAX 1210		Carthage, Ill.
	St. John's, Nfld.		Wilkes-Barre, Pa.	100	WCBA 1440 500 Allentown, Pa.
	VOAS 940 10 St. John's, Nfld.	00	WBBC 1400	500	WCBD 1080 5000
	VOGY 840 46	00	Brooklyn, N. Y. WBBL 1210	100	Waukegan, Iil. WCBM 1370 100
	St. John's, Nfld.		Richmond, Va.		Baltimore, Md.
	VONF 1195 50 St. John's, Nfld.	"	WBBM 770 Chicago, Ili	50000	WCBS 1420 100 Springfield, Ill.
	VOWR 681 50	0	WBBR 1300	1000	WCCO 810 50000
	St. John's, Nfld. WAAB 1410 50	<u>, </u>	Brooklyn, N. Y. WBBZ 1200		Minneapolis, Minn.
	Boston, Mass.		WBBZ 1200 Ponca City, Okia.	100	WCFL 970 5000 Chicago, Iil.
ļ	WAAF 920 100 Chicago, Ill.	10	WBCM 1410	500	WCHS 580 500
	WAAT 940 50	, 	Bay City, Mich. WBEN 900	1000	Charleston, W. Va. WCHV 1420 100
<u> </u>	Jersey City, N. J.		Buffalo, N. Y.		Charlottesville, Va.
	WAAW 660 50 Omaha, Neb.	0	WBEO 1310 Marquette, Mich.	100	WCKY 1490 5000 Covington, Ky.
	WABC 860 5000	0	WBIG 1440	500	WCLO 1200 100
	New York, N. Y. WABI 1200 10		Greensboro, N. C. WBLY 1210	100	Janesville, Wis.
	Bangor, Maine	·	Lima, Ohio	100	WCLS 1310 100 Joliet, Ill.
	WABY 1370 10 Albany, N. Y.	0	WBNO 1200	100	WCMI 1310 100
	WACO 1420 10		New Orleans, La.	500	Ashland, Ky. WCNW 1500 100
	Waco, Texas	_	Columbus, Ohio		Brooklyn, N. Y.
	WADC 1320 100 Akron, Ohio	°	WBNX 1350 New York, N. Y.	250	WCOA 1340 500 Pensacola, Fla.
	WAGF 1370 25	0	WBNY 1370	100	WCOC 880 500
	Dothan, Ala. WAGM 1420 10	0	Buffalo, N. Y. WBOQ 860	50000	Meridian, Miss. WCOL 1210 100
	Presque Isle, Me.		New York, N. Y.		WCOL 1210 100 Columbus, Ohio
	WAIM 1200 10 Anderson, S. C.	0	WBOW 1310 Terre Haute, Ind.	100	WCOP 1120 500 Boston, Mass.
	WALA 1380 50	0	WBRB 1210	100	WCPO 1200 100
	Mobile, Ala.	.	Red Bank, N. J.		Cincinnati, Ohio
	WALR 1210 10 Zanesville, Ohio	٠ <u>ـ</u>	WBRC 930 Birmingham, Ala.	1000	WCRW 1210 100 Chicago, III.
•	WAML 1310 10	0	WBRE 1310	100	WCSC 1360 500
	Laurel, Miss. WAPI 1140 500		Wilkes-Barre, Pa.	50000	Charleston, S. C. WCSH 940 1000
	Birmingham, Ala.		Charlotte, N. C.		Portland, Me.
	WAPO 1420 10 Chattanooga, Tenn.	0	WBTM 1370 Danville, Va.	100	WDAE 1220 1000 Tampa, Fla.
	WARD 1400 500	0	WBZ 990 5	50000	WDAF 610 1000
	Brooklyn, N. Y. WASH 1270 500	,	Boston, Mass. WBZA 990		Kansas City, Mo.
	Grand Rapids, Mich.	, L	WBZA 990 Springfield, Mass.	1000	WDAH 1310 100 El Paso, Texas
-, 				 	
		L			

·	WDAS 1370 100	WEXP :	1370 100 T	WHAS 820	50000
	Philadelphia, Pa.	Clarksburg		Louisville, Ky.	30000
	WDAY 940 1000 Fargo, N. D.	WFAA Dallas, Te	800 50000	WHAT 1310 Philadelphia, Pa.	100
	WDBJ 930 1000		1300 1000	WHAZ 1300	500
	Roanoke, Va.	New York,	N. Y.	Troy, N. Y.	
	WDBO 580 1000 Orlando, Fla.	WFAM South Ben	1200 100 T	WHB 860 Kansas City, Mo.	1000
	WDEL 1120 250	WFAS	1210 100	WHBB 1500	100
	Wilmington, Del. WDEV 550 500	White Pial	-	Selma, Alabama	***
	Waterbury, Vt.	WFBC Greenville,	1300 1000 S. C.	WHBC 1200 Canton, Ohio	100
	WDGY 1180 1000		1310 100	WHBF 1210	100
	Minneapolis, Minn. WDNC 1500 100	Altoona, P	'a. 1360 1000	Rock Island, III.	1000
	Durham, N. C.	Syracuse,	N. Y.	Newark, N. J.	
	WDOD 1280 1000 Chattanooga, Tenn.	WFBM Indianapol	1230 1000	WHBL 1300 Sheboygan, Wis.	500
	WDRC 1330 1000		1270 500	WHBQ 1370	100
· · · · · · · · · · · · · · · · · · ·	Hartford, Conn.	Baltimore,	Part Part Part Part Part Part Part Part	Memphis, Tenn.	400
	WDSU 1250 1000 New Orleans, La.	WFDF Flint, Mic	1310 100 h.	WHBU 1210 Anderson, Ind.	100
	WDWS 1370 100	WFEA	134 0 500	WHBY 1200	100
	Champaign, Ill. WDZ 1020 250	Mancheste	er, N. H. 560 1000	Green Bay, Wis.	100
	Tuscola, III.	Philadelph	ia, Pa.	Calumet, Mich.	
	WEAF 660 50000 New York, N. Y.	WFLA Clearwater	620 1000	WHDH 830 Boston, Mass.	1000
_	WEAN 780 500	WFMD	900 500	WHDL 1420	100
	Providence, R. I. WEBC 1290 1000	Frederick, WFOY	Md. 1210 100	Olean, N. Y. WHEB 740	250
	Superior, Wis.	St. August		Portsmouth, N. H	
	WEBQ 1210 100		1500 100	WHEC 1430 Rochester, N. Y.	500
	Harrisburg, III. WEBR 1310 100	Lancaster.	Pa. 1450 500	WHEF 1500	100
	Buffalo, N. Y.	Cleveland,	Ohio	Kosciusko, Miss.	
	WEDC 1210 100 Chicago, Ill.	WGBB Freeport,	1210 100	WHFC 1420 Cicero, Ill.	100
	WEED 1420 100	WGBF	630 500	WHIO 1260	1000
	Rocky Mount, N. C. WEEL 590 1000	Evansville, WGBI	, Ind. 880 500	Dayton, Ohio	500
	Boston, Mass.	Scranton,		Bluefield, W. Va.	
	WEEU 830 1000 Reading, Pa.	WGCM Gulfport,	1210 100	WHJB 620 Greensburg, Pa.	250
	WEGL 1400 500		1360 500	WHK 1390	1000
· · ·	Brooklyn, N. Y. WEHS 1420 100	Chicago, I	п.	Cleveland, Ohio	500
	WEHS 1420 100 Cicero, Ill.	WGH Newport N	1310 100 Jews. Va.	Columbus, Ohio	500
	WELI 900 500	WGL	1370 100	WHLB 1370	100
	New Haven, Conn. WELL 1420 100	Fort Wayn	ne, Ind. 720 50000	Virginia, Minn.	1000
	Battle Creek, Mich.	Chicago, I	11.	New York, N. Y.	
	WEMP 1310 100 Milwaukee, Wis.	WGNY Chester, N	1210 100	WHO 1000 Des Moines, Iowa	50000
	WENR -870 50000	WGPC	1420 100	WHOM 1450	250
	Chicago, Ill. WEOA 1370 100	Albany, G	_	Jersey City, N. J. WHP 1430	500
	Evansville, Ind.	WGR Buffalo, N	550 1000 . Y.	Harrisburg, Pa.	300
	WESG 850 1000 Elmira, N. Y.		1370 250	WIBA 1280 Madison, Wls.	1000
	WEST 1200 100	New Alban	890 1000	WIBG 970	100
	Easton, Pa.	Atlanta, G	a.	Glenside, Pa.	400
	WEVD 1300 1000 New York, N. Y.	WGY Schenectad	790 50000 ly, N. Y.	Jackson, Mich.	100
	WEW - 760 1000	WHA	940 2500	WIBU 1210	100
	St. Louis, Mo. WEXL 1310 50	Madison, WHAM		Poynette, Wis.	1000
	Royal Oak, Mich.	Rochester,		Topeka, Kans.	
			. [
	1	L	L		

	WIBX 1200	100	WJW 1210 100	WMAL 630 250
	Utica, N. Y.		Akron, Ohio	WMAL 630 250 Washington, D. C.
	WICC 600 Bridgeport, Conn.	500	WJZ 760 50000	WMAQ 670 50000
	ł	100	New York, N. Y. WKAQ 1240 1000	Chicago, Ill.
L	St. Louis, Mo.		San Juan, P. R.	WMAS 1420 100 Springfield, Mass.
		.000	WKAR 850 1000	WMAZ 1180 1000
	Urbana, Ill. WILM 1420	100	East Lansing, Mich.	Macon, Ga.
	Wilmington, Del.		East Dubuque, III.	WMBC 1420 100 Detroit, Mich.
		.000	WKBH 1380 1000	WMBD 1440 500
	Gary, Ind.	.000	LaCrosse, Wis.	Peoria, Ill. WMBG 1210 100
	New York, N.Y.		Cicero, Ill.	WMBG 1210 100 Richmond, Va.
1		.000	WKBN 570 500	WMBH 1420 100
	Miami, Fla. WIP 610 1	.000	Youngstown, Ohlo WKBO 1200 100	Joplin, Mo. WMBi 1080 5000
<u> </u>	Philadelphia, Pa.		Harrisburg, Pa.	WMBi 1080 5000 Chicago, Ill.
		500	WKBV 1500 100	WMBO 1310 100
	Indianapolis, Ind. WIS 560 1	.000	Richmond, Ind. WKBW 1480 5000	Auburn, N. Y.
	Columbia, S. C.		Buffalo, N. Y.	WMBQ 1500 100 Brooklyn, N. Y.
		250	WKBZ 1500 100	WMBR 1370 100
<u> </u>	Milwaukee, Wis.	100	Muskegon, Mich. WKEU 1500 100	Jacksonville, Fla.
	Johnstown, Pa.		Griffin, Ga.	WMC 780 1000 Memphis, Tenn.
		.000	WKOK 1210 100	WMCA 570 500
	Norfolk, Neb. WJAR 890 1	.000	Sunbury, Pa. WKRC 550 1000	New York, N. Y.
	Providence, R. I.		Cincinnati, Ohio	WMEX 1500 100 Boston, Mass.
		.000	WKY 900 1000	WMFD 1370 100
	Pittsburgh, Pa. WJAX 900 1	.000	Oklahoma City, Okla.	Wilmington, N. C.
	Jacksonville, Fla.	.000	WKZO 590 1000 Kalamazoo, Mich.	WMFF 1310 250 Plattsburg, N. Y.
		500	WLAC 1470 5000	WMFG 1210 100
<u> </u>	Cleveland, Ohio WJBC 1200	100	Nashville, Tenn.	Hibbing, Minn.
	Bloomington, Ill.	100	WLAK 1310 100 Lakeland, Fla.	WMFJ 1420 100 Daytona Beach, Fla.
		100	WLAP 1420 100	WMFN 1210 100
	Detroit, Mich. WJBL 1200		Lexington, Ky. 1000	Clarksdale, Miss.
	Decatur, Ill.	100	WLB 1250 1000 Minneapolis, Minn.	WMFO 1370 100 Decatur, Ala.
		100	WLBC 1310 100	WMFR 1200 100
	Baton Rouge, La. WJBR 1420	100	Muncle, Ind.	High Point, N. C.
	Gastonia, N. C.	100	WLBF 1420 100 Kansas City, Kans.	WMIN 1370 100 St. Paul, Minn.
		100	WLBL 900 2500	WMMN 890 250
-	New Orleans, La. WJBY 1210		Stevens Point, Wis.	Fairmont, W. Va.
	Gadsden, Ala.	100	WLBZ 620 500 Bangor, Me.	WMPC 1200 100 Lapeer, Mich.
		000	WLEU 1420 100	WMSD 1420 100
<u> </u>	Jackson, Miss.		Erie, Pa.	Sheffield, Aia.
L	WJEJ 1210 Hagerstown, Md.	100	WLLH 1370 100 Lowell, Mass.	Cedar Rapids, Iowa
	WJIM 1210	100	WLMU 1210 100	WNAC 1230 1000
—	Lansing, Mich.		Middlesboro, Ky.	Boston, Mass.
	WJJD 1130 20 Chicago, Ill.	000	WLNH 1310 100 Laconia, N. H.	WNAD 1010 1000 Norman, Okla.
	WJMS 1420	100	WLS 870 50000	WNAX 570 1000
-	Ironwood, Mich. WJNO 1200	100	Chicago, Ill.	Yankton, S. D.
	W. Palm Beach, Fla.	100	WLTH 1400 500 Prooklyn, N. Y.	WNBC 1380 250 New Britain, Conn.
	WJR 750 50	000	WLVA 1200 100	WNBF 1500 100
	Detroit, Mich. WJRD 1200	100	Lynchburg, Va.	Binghamton, N. Y. WNBH 1310 100
	Tuscaloosa, Ala.	100	WLW 700 500000 Cincinnati, Ohio	WNBH 1310 100 New Bedford, Mass,
	WJSV 1460 10	000	WLWL 1100 5000	WNBR 1430 500
	Washington, D. C.		New York, N. Y.	Memphis, Tenn.
		1		
L			l	
	<u></u>			•

WNBX 1260 1000	WPHR 880 500 Petersburg, Va.	WSGN 1310 100 Birmingham, Ala.
Springfield, Vt. WNBZ 1290 100	WPRO 630 250	WSIX 1210 100
Saranac Lake, N. Y.	Providence, R. I.	Springfield, Tenn.
WNEL 1290 1000	WPRP 1420 100	WSJS 1310 100
San Juan, P. R.	Ponce, P. R.	Winston-Salem, N. C.
WNEW 1250 1000	WPTF 680 5000	WSM 650 50000
Newark, N. J.	Raleigh, N. C.	Nashville, Tenn.
WNLC 1500 100	. WQAM 560 1000	WSMB 1320 500 New Orleans, La.
New London, Conn.	Miami, Fla. WQAN 880 250	WSMK 1380 200
WNOX 1010 1000 Knoxville, Tenn.	Scranton, Pa.	Dayton, Ohio
WNRI 1200 100	WQBC 1360 1000	WSOC 1210 100
Newport, R. I.	Vicksburg, Miss.	Charlotte, N. C.
WNYC 810 1000	WQDM 1370 100	WSPA 920 1000
New York, N. Y.	St. Albans, Vt.	Spartanburg, S. C.
WOAI 1190 50000	WRAK 1370 100	WSPD 1340 1000 Toledo, Ohio
San Antonio, Texas	Williamsport, Pa.	WSPG 640 500
WOC 1370 100	WRAW 1310 100 Reading, Pa.	Portland, Me.
Davenport, Iowa WOCL 1210 50	WRAX 920 250	WSPR 1140 500
Jamestown, N. Y.	Philadelphia, Pa.	Springfield, Mass.
WOI 640 5000	WRBL 1200 100	WSUI 880 500
Ames, Iowa	Columbus, Ga.	Iowa City, Iowa
WOKO 1430 500	WRC 950 500	WSUN 620 1008 St. Petersburg, Fla.
Albany, N. Y.	Washington, D. C. WRDO 1370 100	WSVA 550 500
WOL 1310 100 Washington, D. C.	Augusta, Me.	Harrisonburg, Va.
WOLS 1200 100	WRDW 1500 100	WSVS 1370 50
Florence, S. C.	Augusta, Ga.	Buffalo, N. Y.
WOMT 1210 100	WREC 600 1000	WSYB 1500 100
Manitowoc, Wis.	Memphis, Tenn.	Rutland, Vt.
WOOD 1270 500	WREN 1220 1000	WSYR 570 250 Syracuse, N. Y.
Grand Rapids, Mich.	Lawrence, Kans. WRGA 1500 100	WTAD 900 500
Bristol, Tenn.	Rome, Ga.	Quincy, Ill.
WOR 710 50000	WRJN 1370 100	WTAG 580 500
Newark, N. J.	Racine, Wis.	Worcester, Mass.
WORC 1280 500	WROK 1410 500	WTAL 1310 100 Tallahassee, Fla.
Work 1320 1000	Rockford, Iil.	WTAM 1070 50000
WORK 1320 1000 York, Pa.	Knoxville, Tenn.	Cleveland, Ohio
WORL 920 500	WRR 1280 500	WTAQ 1330 1000
Boston, Mass.	Dallas, Texas	Green Bay, Wis.
WOS 630 500	WRUF 830 5000	WTAR 780 500
Jefferson City, Mo.	Gainesville, Fla.	Norfolk, Va.
WOSU 570 750 Columbus, Ohio	Richmond, Va.	WTAW 1120 500 College Station, Tex.
WOV 1130 1000	WSAI 1330 1000	WTAX 1210 100
New York, N. Y.	Cincinnati, Ohio	Springfield, Ill.
WOW 590 5000	WSAJ 1310 100	WTBO 800 250
Omaha, Neb.	Grove City, Pa.	Cumberland, Md.
WOWO 1160 10000	WSAN 1440 500 Alientown, Pa.	WTCN 1250 1000 Minneapolis, Minn.
Fort Wayne, Ind. WPAD 1420 100	WSAR 1350 1000	WTEL 1310 100
Paducah, Ky.	Fall River, Mass.	Philadelphia, Pa.
WPAR 1420 100	WSAY 1210 100	WTFI 1450 500
Parkersburg, W. Va.	Rochester, N. Y.	Athens, Ga.
WPAX 1210 100	WSAZ 1190 1000	WTHT 1200 100
Thomasville, Ga.	Huntington, W. Va.	Hartford, Conn.
WPAY 1370 100	WSB 740 50000 Atlanta, Ga.	WTIC 1040 50000 Hartford, Conn.
Portsmouth, Ohio WPEN 920 250	WSBC 1210 100	WTJS 1310 100
Philadelphia, Pa.	Chicago, Ill.	Jackson, Tenn.
WPFB 1370 100	WSBT 1360 500	WTMJ 620 1000
Hattiesburg, Miss.	South Bend, Ind.	Milwaukee, Wis.
WPG 1100 5000	WSFA 1410 500	WTMV 1500 100
Atlantic City, N. J.	Mongtomery, Ala.	East St. Louis, Iil.
<u> </u>		

	_				
	WTNJ 1280 500 Trenton, N. J.		XECW 1310 10 Mexico City, D. F.		XERA 840 250000 Villa Acuna, Coah.
<u> </u>	WTOC 1260 1000		XED 1155 2500		XES 990 250
-	Savannah, Ga. WTRC 1310 100		Guadalajara, Jal. XEE 1210 50	 	Tampico, Tams.
	Elkhart, Ind.		Durango, Dgo.		Tijuana, L. C.
	WVFW 1400 500 Brooklyn, N. Y.		XEF 980 100 Juarez, Chih.		XET 690 500 Monterrey, N. L.
	WWAE 1200 100 Hammond, Ind.		XEFA 1180 500 Mexico City, D. F.		XETB 1310 125
	WWJ 920 1000		XEFB 1420 100		Torreon, Coah. XETF 1220 12
	Detroit, Mich.		Monterrey, N. L. XEFC 560 100		Veracruz, Ver. XETH 1210 100
<u> </u>	New Orleans, La.		Merida, Yuc.		Puebla, Pue.
	Asheville, N. C	ł	XEFE 1340 250 Laredo, Tams,	i l	XEU 1010 250 Veracruz, Ver.
	WWRL 1500 100 Woodside, N. Y		XEFI 1440 250 Chihuahua, Chih.		XEW 890 50000 Mexico City, D. F.
	WWSW 1500 100		XEFJ 1230 100		XEWZ 1150 100
	Pittsburgh, Pa WWVA 1160 5000	-	Monterrey, N. L. XEFL 1150 250	 	Mexico City, D. F. XEX 1310 125
<u> </u>	Wheeling, W. Va.		Tijuana, L. C.		Monterrey, N. L.
	WXYZ 1240 1000 Detroit, Mich.		XEFO 940 5000 Mexico City, D. F.		Mexico City, D. F.
	W1XBS 1530 1000 Waterbury, Conn.		XEFV 1210 100 Juarez, Chih.		XEY 1000 10 Merida, Yuc.
	W2XR 1550 1000		XEFW 1310 250		XEYZ 780 10000
-	Long Island City. \ Y. W6XAI 1550 1000		Tampico, Tams.		Mexico City, D. F. XEZ 630 500
	Bakersfield, Calif W9XBY 1530 1000		Mexico City, D. F.		Merida, Yuc.
	W9XBY 1530 1000 Kansas City, Mo		XEG 1270 200 Ensenada, B. C.		XEZZ 1370 100 San Luis Potosi, S. L. P.
	XEA 1060 500 Guadalajara, Jal.		XEH 1150 250 Monterrey, N. L.		XFA 1310 5 Aguascalientes, Ags.
	XEAA 920 200		XEI 1370 125		XFB 1270 250
-	Mexicali, B. C. XEAC 1240 250		Morelia, Mich. XEJ 1020 1000	-	Jaiapa, Ver. XFC 810 350
	Tijuana, L. C.		Juarez, Chih.	ļ	Aguascalientes, Ags.
	XEAF 990 500 Nogales, Son.		XEK 990 100 Mexico City, D. F.		XFD 1340 350 Jalapa, Ver.
	XEAG 1310 10 Cordoba, Ver.		XEKL 1240 500 Leon, Guan.		XFO 940 5000 Mexico City, D. F.
	XEAI 1240 100		XEL 1100 250		XFX 610 1000
	Mexico City, D. F. XEAM 750 7.5		Mexico City, D. F. XELA 1240 50	-	Mexico City, D. F. YNLF 1275 20
	Matamoros, Tams.		Saltillo, Coah.		Managua, Nicaragua
	XEAO 560 250 Mexicali, B. C.		XELO 1110 10000 Piedras Negras, Coah.		YNOP 1230 100 Managua, Nicaragua
	XEAQ 1090 1000 Rosarito, L. C.		XEME 1240 15 Merida, Yuc.		YNVA 950 30 Managua, Nicaragua
	XEAS 1160 100		XEMO 860 5000		WINDING CO. THE COLUMN CO.
	Saltillo, Coah, XEAT 1210 50		Tijuana, L. C. XEMX 1280 12	<u> </u>	,
	Hidalgo, Chih. XEAW 960 50000		Mexico City, D. F.		
	Reynosa, Tams.	L	XEMZ 820 Coronado Isl., L. C.		
	XEAZ 1420 7 Guanajuato, Gto.		XEN 710 1000 Mexico City, D. F.		
	XEB 1030 10000		XENT 910 150000		
-	Mexico City, D. F. XEBC 730 5000		Nuevo Laredo, Tams. XEOK 760 250		
	Agua Callente, L. C.		Tijuana, L. C.		
	Hermosillo, Sonora		XEOX 640 500 Saltillo, Coah.		
1	XEBK 1000 100 Nuevo Laredo, Tams.		XEP 1160 500 Juarez, Chih.		
	XEC 1160 30		XEPN 590 50000		:
-	Tijuana, L. C.		Piedras Negras, Coah.	<u> </u>	· ·
		<u> </u>		<u> </u>	,
	j				1

TPA3, Pontoise, 11.880	TPA4 Pontoise 11 720	YV6RV, Valencia, 6.520	YV5RMO, Marc'bo, 5.850	YV4RC, Caracas, 6.375	YV3RC, Caracas, 6.165	YV2RC, Caracas, 5,800	YVQ, Maracay, 6.672	XEVI, Mexico Cy., 5.980	XEDQ, Guadija., 9,520	XECR, Mexico Cy., 7.380	NEBT, Mexico Cy., 6.000	W9NF, Chicago, 6.100	W8XK, Pittsbgh., 15.210	W8XK, Pittsbgh, 11.870	W8XK, Pittsburgh, 6.140	W8XAL, Cincin'ti, 6.060	W4XB, Miami, 6.040	W4XB, Miami, 6.040	W3XAU, Phila., 9.590	W3XAU, Phila., 6.060	W2XE, Wayne, 17.760	W2XE, Wayne, 15.270	W2XE, Wayne, 11.830	W2XE, Wayne, 6.120		Eastern Time P. M.
11.880	301, 5.720		bo,5.850	s, 6.375	9, 6.165		6.672 Saturday Sat			3.7.380	in the contract of the contrac		15.210	. 11.870	gh, 6.140		Weekdays	6.040 Sunday Sunday Sunday	9.590	. 6.060	17.760	15.270	11.830	6.120		12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15 14:30 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:30
			-	-			9	-	-	- - - -	E 11., F.								- - - - - -			- -	- - - -	_	2 2 2 2 2	2:30 2:45 3:00 3:15 3:30 3:45

Hints on Tuning the Short Waves

completely in daylight. near dawn. night-time area and the receiver in daylight, so tuners should try for Europeans in this band in the early evening and for Australians It has been noted that shortwave reception follows certain definite trends. Stations between 5 and 7 megacycles favor darkness between the transmitter and the receiver. Transmitters working between about 8 and 10 megacycles are best when the station is in a Below 10 megacycles the difficulty in tuning increases; here the path of the transmission should be as nearly as possible

Europe, Africa and South America below 10 megacycles. Europeans are good all night. In the early morning tune for Australia and Asia between 6 and 10 megs. During the daytime fune for At night tune for South America between 5 and 10 megs. Europeans are good in the early evening and some of the higher powered

12:30 12:45 13:30 13:45 14:30 13:45 14:30 14:45 14:30 14:45 15:30 15:45 15:30 15:45 16:30 16:45 16:45 16:30 16:45 16:45 16:30 16:45 16:4
14:45 15:00 15:15 15:30 16:15 16:30 16:16 16:30 16:16 16:30 16:31 16:30 16:31 16:30 16:31 16:30 16:31 16:30 16:31 16:30 17:30 17:30 17:30 17:31 18:30 18:3
17:00 17:15 17:30 17:3

- - - - - -		_		<u> </u>		HC2RL, Guyaquil, 6.650	HC2ET, Guyaquil, 4.600	HCJB, Quito, 8.900	HBP, Geneva, 7.797	Geneva, 9.595	Daventry, 15.310	Daventry, 15.180	GSF, Daventry, 15.140	GSD, Daventry, 11.750	Daventry, 9.580	Daventry, 9.510	Daventry, 6.050	HAT4, Budapest, 9.125	EAQ, Madrid, 9.862	DJN, Berlin, 9.540	DJD, Berlin, 11.770	DJB, Berlin, 15.200	DJA, Berlin, 9.560	CT1AA, Lisbon, 9.650	CRCX, Toronto, 6.090	CO9JQ, Camaguey, 8.665	COCO, Havana, 6.010	COCH, Havana, 9.428	COCD, Havana, 6.130	COCD, Havana, 6.130	CJRX, Winnipeg, 11.720	CJRX, Winnipeg, 11.720	CJRO, Winnipeg, 6.150	CJRO, Winnipeg, 6.150	CHNX, Halifax, 6.110	CEC, Santiago, 10.670	P. M. 12:00
- - - - - -	_ _	_		_	-	-			-						-		-	_			_	-	-		-	_	_		-		-	-	-	_	-	-	12:30
- - - -	_		-	-		<u> </u>	-	-	-	_	-				-		-	-	Sal	_			_			_	_				-	_	_				12:4
_ -	_	_	_	i-i		_	-		_								_		Saturday			_							_			_	_	_	_	_	13:0
- 1	_	_	_			_			_	_	_						_	_	ay	_			_	_			_		_		_	_	<u> </u>	_	_	_	13:1 13:3
-1-	_	_	_	_		_	_	_	_	_	_				-		-	-			-	_	-	-	_				-		-		-	_			13:4
- -	_	-	-	-	-	-	-	-	-	_	-				-		-	_	-	-	-	-	-		ļ	—	-		-				-	-	-	-	14:0
- -	_	-	-		-				-	-	-				-		-	-	-	_	-	-	-		_		-		-							-	14:1
-	_		-	-	-	-	-			-	-							_																_			14:3
	_														_		_	_	_		_	-		_	_	_	_		_		_	_	<u> </u>	_	_	_	14:4
_ .							. _	.		.					-		_	_	-	_	-		_		-	-	_		_		-		-		-	-	15:0 15:1
- -	_	_	-	-	-	-	.	-	-	-			İ	ŀ	-		-	-	-		<u> </u> -	_		-	-	_	-		-				-		-	-	15:3
			-	-		-	-	-	-	-	-				-				-	_	-	_	-	-	-	-			_				-			-	15:4
	_	-	-	-	-	-	-	-		_					_		_	_			_	_	_													_	16:0
					Sunday						_				_		_	_	_	_			_	_	_	_										_	16:1
_ .		.			lay	_	. _		_		-				_			-	_			_		Tue	-	-			-				-			-	$\frac{16:3}{16:4}$
		- -	-	-	-	·	-	-	-	-	_				-		-	-	-			_		Tuesday, Thursday, Saturday	-				-		-		_				17:0
- -	_	-	¥	-	-		-	-	-	-	-						_	-	-					, T		_					-					-	17:1
- -	_		Wkds.		-	-	-	-	Sa.	Sa.				_		_	_	_	_					nur.						We		Š.		S			17:3
	_		_		_				_	_	_	_		_	_	_	_	_						sda	_	_				Weekdays	_	Sunday	_	Sunday		_	17:4
_ -	_		_	_	_			_		_		_	_	_		 		S	Daily					y, St		_				ays	-	ьy		Į.		_	18:0 18:1
	_		_	-	-	Sunday	-	-	_			_		-		-		Sunday						ıuı	-	-							_			-	18:3
	_			-	-	lay	-		-	-		-	-	-		-		Ų						day									_			-	18:4
_ -	_		_	-	_		_		_	_			_					_	_										'								19:0
	_		_				_	-	_	_								_	_										Sunday		_					_	19:1
_ -	_		_	_	We	_	.		_	_		_	<u> </u> _			_		_			ĺ			-		_			day				_			-	$\frac{19:3}{19:4}$
-			-	_	Weekdays	-	-		-	-	-	_	-	_	-	-	-	-	-							_		_			-		_			_	20:0
			-	l H	ays	-	-	Ľ	-	-	-	_	-		-	_	-		-					-				_									20:1
¥.			-	ues			-	Dally	-							_		_																١.			20:3
edne				Tuesday, Friday	_			у ех			_	_		_	_		_		_					_		_		_								_	20:4
Wednesday	_		_	, Fr	_	_		except	_	_			-					_	<u> </u>					_				_									21:0
			-	iday	_		-	N	-	_	-	_	_					-	_					-				_					We				21:30
	—		_		-	١.		Monday	-		-	-	-			-	-	-	-							-					Veel		Weekdays			-	21:4
	_	_	-	-	_	Tue	W.,	яy	-		_	_	_			_	_			}						_		_			Weekdays		ays	_			22:0
	_					Tuesday	W., Sa.		_							_	_									_					VS	_					22:1
-	_	_	_	_	_	_			_	_	_	_	_			_	_	-	_	-	_	-	_	_			-	_				_		_		-	22:3
- -		_	_	-	_		-		_	_	_	_	-	-	-	-	_	_	-	-	-	-	-	_		-	-	-	_			-		-	-	-	23:0
- -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\left -\right $	-	-		_	-	-	-			-		-		-	23:1
- -	_	-	Sa.	-	-	-	-	-	-	-	_		-	-	-	-	-	-	-	-		-	-	-		-		-	-			-		-		_	23:3

QUICK INDEX TO ALL STATION DATA

QUICK INDEA TO A	LL STATION DATA
NORTH AMERICAN BROADCAST	LONG WAVE
Frequency Checks—February, Page 33 Owners' AddressMay, Page 77 Time on the AirFebruary, Page 78 By FrequenciesSeptember, Page 59 By LocationsSeptember, Page 76	By FrequenciesApril, Page 49 By LocationsApril, Page 51 By Call LettersApril, Page 52 MISCELLANEOUS
By CallsSeptember, Page 82 The Month's ChangesSept., Page 47	Which Is the Best AerialMarch, 1935 Eliminating NoisesApril, 1935 Sets for the Short WavesApril, 1935
SHORT WAVE By FrequenciesSeptember, Page 48 By LocationsSeptember, Page 53 By CallsSeptember, Page 57 When to TuneSeptember, Page 95	Short Wave SymbolsApril, 1935 The "V" Doublet AntennaMay, 1935 Recording ProgramsDecember, 1935 For Short Wave Beginners
FOREIGN BROADCAST	Apex StationsApril, 1936
Time of EuropeansOctober, Page 3 By FrequenciesMay, Page 62 By LocationsMay, Page 71 By Call LettersMay, Page 76	Assorted S. W. InformationMay, 1936 A Tuned AntennaMay, 1936 The Fading ProblemMay, 1936 A Good Pre-SelectorJune, 1936 Choosing an AerialSeptember, 1936
INSURE YOUR RASEND THIS BI The Radex Press Inc., Conneaut, Ohio:	ADIO ENJOYMENT LANK TODAY
	end me postpaid my choice of your offers
Program "slates" 1 for 10c	☐ 2 for 15c ☐ 4 for 25c
☐ One Radio World Map and Time	e Converter 25c
One copy of the next RADEX	25c
One year's subscription to RADE	EX, 10 issues\$1.75
☐ Two years\$3.25	☐ Three years\$4.75

96

Write Name Plainly

Street and Number

City and State

101

I sometimes think there should be a law requiring everyone to spend some of his spare time training for the future. I once thought all the cards were stacked against me. Now I'm making good money. Maybe my experience will show you the way to better pay too.

I THOUGHT RADIO WAS A PLAYTHING

But Now My Eyes Are Opened -- I'm Making Over \$30 a Week!

\$30 a week! Man alive, I used to think anyone making that much was just plain lucky.

A short time ago I was just barely getting by. It was the same old story—a little job; a salary as small as the job.

If you had told me that I would soon be making \$30 and more a week in my own Radio business—I'd thought you were crazy. To me, Radio was a plaything. Now I know it's a big business where specialized training pays rich rewards.

But I am getting ahead of my story—let me tell you how it all started. I was hard up because I had been kidding myself—that's all—not because I had to be. I thought a fellow either had to be lucky or have a string of college degrees to make good money.

One day I picked up a magazine and an ad attracted me because it seemed to fit my case. It said, "I will train you to start a spare time or full time Radio service business of your own WITHOUT CAPITAL."

"They're trying to kid somebody," I thought, but I'll find out what it's all about."

I wrote in, and within a few days received a 64-page book telling about the opportunities in Radio; how I could prepare right at home in my spare time, and how they would show me how to start making money in my neighborhood selling and repairing Radio sets. It would have sounded too good to be true if it had not been backed up by nearly 100 letters from fellows who had taken their course and were very enthusiastic about it.

What has happened since seems almost like a dream. I started to take their course, and soon I was ready to start making money in my neighborhood—as much as \$5 and \$15 a week. It wasn't long until I had saved enough money to start a full time business of my own.

That business in a surprisingly short time grew to the point where I am clearing over \$30 a week. All this took place under the watchful guidance of my friends at the National Radio Institute. They also offered to train me for jobs in Broadcasting Stations, Radio Factories, Radio Jobbers and Dealers, Aviation Radio, Television, Short Wave Stations, Automobile, Police Radio, Loud Speaker Systems, and other branches of Radio.

THINK IT OVER

Friend—you may not be as bad off as I was—but think it over—are you satisfied? Are you making as much money as you need? Would you sign a contract to stay where you are for the next

ten years at the same salary? Those are the things you have to think about—because no one is going to make it his business to push you ahead—you must make it your own business.

TAKE MY TIP

Write for their book, "Rich Rewards in Radio." It won't cost you anything except a postage stamp. It shows you a lot of things which I don't believe you know now about Radio—a lot of facts and figures on the opportunities in this new, fast-growing field—where the lobs are, what they pay, how to get ready for them. Beginners as well as experienced men are making as much as \$500 to \$1,500 a year more as a result of N. R. I. Training. And at the same time they send the book "Rich Rewards in Radio," they'll send you, without any cost or obligation, a Free Lesson, to prove that their training is easy, practical, fascinating. The lesson they send, "Radio Receiver Troubles—Their Cause and Remedy," is valuable. And when you read this lesson, you'll know why so many fellows have mastered N. R. I. Training and are now making good money as Radio Experts.

You are not placing yourself under any obligation by writing for this material as they will gladly send it to anyone who is ambitious and wants to get ahead. Mail the coupon in an envelope or paste it on a lc postcard. Just address Mr. J. E. Smith, President, National Radio Institute, Dept. 6JO, Washington, D. C.

J. E. SMITH, President, National Radio Institute Dept. 6JO, Washington, D. C. MAIL THIS COUPON
Dear Mr. Smith:
Without obligation, send me the sample lesson and your book about spare time and full time Radio opportunities, and how I can train for them at home in spare time. (Please print plainly.)
Name
Address
City State

Exclusive New MIDWES CTRIK-S

Slashes Radio Current Bills IN HALF

NEW 1937 AIR TESTED

5 WAVE BANDS

The Electrik-Saver is today's most sensational radio feature. It cuts radio wattage consumption as much as 50% and results in Midwest 16 and 18-tube radios consuming no more current than an ordinary 7 or 8-tube set. This feature enables the "Air Tested" Midwest to operate on low line voltages—as low as 80 volts! In addition, the Electrick-Saver increases tube life, reduces strain on the set, eliminates repair bills and makes for more consistent and gloriously realistic reception.

AVE#50% DIRECT FROM MIDWEST FACTORY

NO middlemen's profits to pay! Buying uradio direct from the Midwest factory makes your radio dollar go twice as far See for yourself that Midwest offers you greater radio values—enables you to buy the more economical factory-to-you way that scores of buy the more economical nacroy-to-you way that scores of thousands of radio purchasers have preferred since 1920. Never before so much radio for so little money! Why pay more? The broad Midwest Forcign Reception and Money-Back Guarantees insure your satisfaction. You get 30 days FREE trial in your own home!

Once again, Midwest demonstrates its leadership by offering the world's most powerful and most beautiful ALL powerful, so amazingly selective, and most beautiful ALL. WAVE 16-tube, 5-Band Radio. startling achievement, it makes the whole world your playground Powerful Triple-Twin tubes (two tubes in one!) give 18-tube results. This advanced radio is a master achievement, a highly perfected, precisely built, radio-musical instrument that will thrill you with its marvelous super performance ... glorious crystal-clear performance glorious cryston-wear "concert" realism and magnificent foreign reception. The Dual Audio Program Expander gives a living, vital realistic quality to voice and musical reproduction. Before and musical reproduction.

many of them exclusive, make it easy to parade the nations of the world before you. You can switch instantly from American programs.

To Canadian, police, amateur, commercial, airplane and ship broadcasts. to the finest and most fascinating foreign programs. The new Midwest Tuning System for example, shows you exactly where to tune for foreign stations... while you buy, write for the F R E E 40-page four

color can be secured and 1937 MIDWEST USES LESS doubles the excitecatalog CURRENT THAN AN ment and joy of.
TODAY ORDINARY LIGHT BULB short wave tuning.

so delicately sensitive that it brings

in distant foreign stations with full

loud speaker volume on channels

Scores

adjacent to powerful locals. Scores of marvelous Midwest features,

many of them exclusive, make

With a Midwest, the finestentertainment the world has to offer is all your command. It is preferred by famous orchestral leaders, musicians, movie stars and discriminating radio purchasers everywhere. It enjoys an increasing world-wide sale because it outperforms ordinary receivers costing twice as much You can order your Midwest "Air-Tested" radio from the new 40-page catalog with as much extrainty of satisfaction as if you were to come yourself to our great factory. (It pictures the beautiful 1937 radios... in their actual colors) You pay as little as 10e a day. Three iron-clad guarantees protect you. (I) A Foreign Reception Guarantee (2) Absolute Guarantee of Satisfaction—(3) One Year Warranty. Fill in and mail the coupun NOW!

COMPLETE GIANT SPERKER

TERMS LOW 10 TA DAY

MY MIDWEST HAS UNEQUALLED BEAUTY OF TONE AND SHARP-NESS OF SELECTIVITY. Glen Gray

CONGRATULATIONS FOR CREATING THE MIDWEST, IT RRINGS IN WONDERFUL FOREIGN RECEPTION. Rubinoff

9 to 2,200

METERS

5 WAVE BANDS 9to2200 METERS ELECTRIK-SAVER

PUSH BUTTON TUNING

AUTOMATIC AERIAL ADAPTION **DUAL AUDIO**

PROGRAM EXPANDER

Free 30-DAY TRIAL OFFER and 40 PAGE FOUR COLOR Free CATALOG

MIDWEST RADIO CORPORATION Special offer an Dept. 48-81, Cincinnati, Ohio

Without obligation on my part, send only when dealine your new FREE catalog and ing direct with complete details of your liberal 30 day fREE trial offer This is NOT an order.

Name

Address QTown.....State...

DEPT. C.81 Established 1920

CINCINNATI, OHIO, U.S.A. Cable Address MIRACO... All Codes

foreign stations ... while Automatic Aerial Adap-tion triples the number

of foreign stations that